Search results
Results From The WOW.Com Content Network
In propositional logic, tautology is either of two commonly used rules of replacement. [ 1 ] [ 2 ] [ 3 ] The rules are used to eliminate redundancy in disjunctions and conjunctions when they occur in logical proofs .
Some of these connectives may be defined in terms of others: for instance, implication, p → q, may be defined in terms of disjunction and negation, as ¬p ∨ q; [75] and disjunction may be defined in terms of negation and conjunction, as ¬(¬p ∧ ¬q). [51]
Formulas and are logically equivalent if and only if the statement of their material equivalence is a tautology. [ 2 ] The material equivalence of p {\displaystyle p} and q {\displaystyle q} (often written as p ↔ q {\displaystyle p\leftrightarrow q} ) is itself another statement in the same object language as p {\displaystyle p} and q ...
With this premise, we also conclude that q=T, p∨q=T, etc. as shown by columns 9–15. The column-11 operator (IF/THEN), shows Modus ponens rule: when p→q=T and p=T only one line of the truth table (the first) satisfies these two conditions. On this line, q is also true. Therefore, whenever p → q is true and p is true, q must also be true.
Tautological consequence can also be defined as ∧ ∧ ... ∧ → is a substitution instance of a tautology, with the same effect. [2]It follows from the definition that if a proposition p is a contradiction then p tautologically implies every proposition, because there is no truth valuation that causes p to be true and so the definition of tautological implication is trivially satisfied.
∀X P(X) → Q(X) ∀X Q(X) → R(X) Therefore, ∀X P(X) → R(X) In CNF, the antecedents become: ¬P(X) ∨ Q(X) ¬Q(Y) ∨ R(Y) (The variable in the second clause was renamed to make it clear that variables in different clauses are distinct.) Now, unifying Q(X) in the first clause with ¬Q(Y) in the second clause means that X and Y become ...
A graphical representation of a partially built propositional tableau. In proof theory, the semantic tableau [1] (/ t æ ˈ b l oʊ, ˈ t æ b l oʊ /; plural: tableaux), also called an analytic tableau, [2] truth tree, [1] or simply tree, [2] is a decision procedure for sentential and related logics, and a proof procedure for formulae of first-order logic. [1]
At any time, if P→Q is true, it can be replaced by P→(P∧Q). One possible case for P→Q is for P to be true and Q to be true; thus P∧Q is also true, and P→(P∧Q) is true. Another possible case sets P as false and Q as true. Thus, P∧Q is false and P→(P∧Q) is false; false→false is true. The last case occurs when both P and Q ...