Search results
Results From The WOW.Com Content Network
An excircle or escribed circle [2] of the triangle is a circle lying outside the triangle, tangent to one of its sides, and tangent to the extensions of the other two. Every triangle has three distinct excircles, each tangent to one of the triangle's sides.
A mathematical symbol is a figure or a combination of figures that is used to represent a mathematical object, an action on mathematical objects, a relation between mathematical objects, or for structuring the other symbols that occur in a formula. As formulas are entirely constituted with symbols of various types, many symbols are needed for ...
The tangential triangle of a reference triangle (other than a right triangle) is the triangle whose sides are on the tangent lines to the reference triangle's circumcircle at its vertices. [ 64 ] As mentioned above, every triangle has a unique circumcircle, a circle passing through all three vertices, whose center is the intersection of the ...
Typographical symbols and punctuation marks are marks and symbols used in typography with a variety of purposes such as to help with legibility and accessibility, or to identify special cases. This list gives those most commonly encountered with Latin script .
In every triangle a unique circle, called the incircle, can be inscribed such that it is tangent to each of the three sides of the triangle. [19] About every triangle a unique circle, called the circumcircle, can be circumscribed such that it goes through each of the triangle's three vertices. [20]
If vertex A is located at the origin (0, 0) of a Cartesian coordinate system and the coordinates of the other two vertices are given by B = (x B, y B) and C = (x C, y C), then the area can be computed as 1 ⁄ 2 times the absolute value of the determinant
The triangle's nine-point circle has half the diameter of the circumcircle. In any given triangle, the circumcenter is always collinear with the centroid and orthocenter. The line that passes through all of them is known as the Euler line. The isogonal conjugate of the circumcenter is the orthocenter.
Given a circle whose center is point O, choose three points V, C, D on the circle. Draw lines VC and VD: angle ∠DVC is an inscribed angle. Now draw line OV and extend it past point O so that it intersects the circle at point E. Angle ∠DVC intercepts arc DC on the circle. Suppose this arc includes point E within it.