Search results
Results From The WOW.Com Content Network
Setting aside other factors (e.g., balancing selection, and genetic drift), the equilibrium number of deleterious alleles is then determined by a balance between the deleterious mutation rate and the rate at which selection purges those mutations. Mutation–selection balance was originally proposed to explain how genetic variation is ...
Two useful introductions to the fundamental theory underlying the unit of selection issue and debate, which also present examples of multi-level selection from the entire range of the biological hierarchy (typically with entities at level N-1 competing for increased representation, i.e., higher frequency, at the immediately higher level N, e.g., organisms in populations or cell lineages in ...
The mechanisms of evolution focus mainly on mutation, genetic drift, gene flow, non-random mating, and natural selection. Mutation: Mutation [12] is a change in the DNA sequence inside a gene or a chromosome of an organism. Most mutations are deleterious, or neutral; i.e. they can neither harm nor benefit, but can also be beneficial sometimes.
The McDonald–Kreitman test [1] is a statistical test often used by evolutionary and population biologists to detect and measure the amount of adaptive evolution within a species by determining whether adaptive evolution has occurred, and the proportion of substitutions that resulted from positive selection (also known as directional selection).
The K a /K s ratio is used to infer the direction and magnitude of natural selection acting on protein coding genes. A ratio greater than 1 implies positive or Darwinian selection (driving change); less than 1 implies purifying or stabilizing selection (acting against change); and a ratio of exactly 1 indicates neutral (i.e. no) selection.
Mutationism, along with other alternatives to Darwinism like Lamarckism and orthogenesis, was discarded by most biologists as they came to see that Mendelian genetics and natural selection could readily work together; mutation took its place as a source of the genetic variation essential for natural selection to work on. However, mutationism ...
Nearly neutral mutations are those that carry selection coefficients less than the inverse of twice the effective population size. [30] The population dynamics of nearly neutral mutations are only slightly different from those of neutral mutations unless the absolute magnitude of the selection coefficient is greater than 1/N, where N is the ...
In such cases, selection would compete with drift: most slightly deleterious mutations would be eliminated by natural selection or chance; some would move to fixation through drift. The behavior of this type of mutation, described by an equation that combined the mathematics of the neutral theory with classical models, became the basis of Ohta ...