Search results
Results From The WOW.Com Content Network
Magnetic induction B (also known as magnetic flux density) has the SI unit tesla [T or Wb/m 2]. [1] One tesla is equal to 10 4 gauss. Magnetic field drops off as the inverse cube of the distance ( 1 / distance 3 ) from a dipole source. Energy required to produce laboratory magnetic fields increases with the square of magnetic field. [2]
The gauss is the unit of magnetic flux density B in the system of Gaussian units and is equal to Mx/cm 2 or g/Bi/s 2, while the oersted is the unit of H-field. One tesla (T) corresponds to 10 4 gauss, and one ampere (A) per metre corresponds to 4π × 10 −3 oersted.
The tesla (symbol: T) is the unit of magnetic flux density (also called magnetic B-field strength) in the International System of Units (SI). One tesla is equal to one weber per square metre .
The magnetic field of a magnetic dipole has an inverse cubic dependence in distance, so its order of magnitude at the earth surface can be approximated by multiplying the above result with (R outer core ⁄ R Earth) 3 = (2890 ⁄ 6370) 3 = 0.093 , giving 2.5×10 −5 Tesla, not far from the measured value of 3×10 −5 Tesla at the equator.
The tesla is equivalent to the magnetic flux (in webers) per unit area (in meters squared), thus giving B the unit of a flux density. In CGS, the unit of B is the gauss (G). One tesla equals 10 4 G. The magnetic field H is given in SI units of ampere-turns per meter (A-turn/m).
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
In the CGS system, the unit of the H-field is the oersted and the unit of the B-field is the gauss.In the SI system, the unit ampere per meter (A/m), which is equivalent to newton per weber, is used for the H-field and the unit of tesla is used for the B-field.
Gauss's law for magnetism, which is one of the four Maxwell's equations, states that the total magnetic flux through a closed surface is equal to zero. (A "closed surface" is a surface that completely encloses a volume(s) with no holes.)