When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shape of the universe - Wikipedia

    en.wikipedia.org/wiki/Shape_of_the_universe

    The density parameter is the average density of the universe divided by the critical energy density, that is, the mass energy needed for a universe to be flat. Put another way, If Ω = 1, the universe is flat. If Ω > 1, there is positive curvature. If Ω < 1, there is negative curvature.

  3. Flatness problem - Wikipedia

    en.wikipedia.org/wiki/Flatness_problem

    The local geometry of the universe is determined by whether the relative density Ω is less than, equal to or greater than 1. From top to bottom: a spherical universe with greater than critical density (Ω>1, k>0); a hyperbolic, underdense universe (Ω<1, k<0); and a flat universe with exactly the critical density (Ω=1, k=0).

  4. Flatness (cosmology) - Wikipedia

    en.wikipedia.org/wiki/Flatness_(cosmology)

    Such a space is called a "flat space" or Euclidean space [citation needed]. Whether the universe is “flat″ could determine its ultimate fate; whether it will expand forever, or ultimately collapse back into itself. The geometry of spacetime has been measured by the Wilkinson Microwave Anisotropy Probe (WMAP) to be nearly flat

  5. Lambda-CDM model - Wikipedia

    en.wikipedia.org/wiki/Lambda-CDM_model

    The fraction of the total energy density of our (flat or almost flat) universe that is dark energy, , is estimated to be 0.669 ± 0.038 based on the 2018 Dark Energy Survey results using Type Ia supernovae [8] or 0.6847 ± 0.0073 based on the 2018 release of Planck satellite data, or more than 68.3 % (2018 estimate) of the mass–energy density ...

  6. Ultimate fate of the universe - Wikipedia

    en.wikipedia.org/wiki/Ultimate_fate_of_the_universe

    In general, dark energy is a catch-all term for any hypothesized field with negative pressure, usually with a density that changes as the universe expands. Some cosmologists are studying whether dark energy which varies in time (due to a portion of it being caused by a scalar field in the early universe) can solve the crisis in cosmology. [7]

  7. Static universe - Wikipedia

    en.wikipedia.org/wiki/Static_universe

    In cosmology, a static universe (also referred to as stationary, infinite, static infinite or static eternal) is a cosmological model in which the universe is both spatially and temporally infinite, and space is neither expanding nor contracting. Such a universe does not have so-called spatial curvature; that is to say that it is 'flat' or ...

  8. Universe - Wikipedia

    en.wikipedia.org/wiki/Universe

    Illustration of the observable universe, centered on the Sun. The distance scale is logarithmic. Due to the finite speed of light, we see more distant parts of the universe at earlier times. Due to the finite speed of light, there is a limit (known as the particle horizon) to how far light can travel over the age of the universe.

  9. De Sitter universe - Wikipedia

    en.wikipedia.org/wiki/De_Sitter_universe

    A de Sitter universe is a cosmological solution to the Einstein field equations of general relativity, named after Willem de Sitter.It models the universe as spatially flat and neglects ordinary matter, so the dynamics of the universe are dominated by the cosmological constant, thought to correspond to dark energy in our universe or the inflaton field in the early universe.