When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    There are 3 × 3 × 3 = 27 possible combinations of three basic rotations but only 3 × 2 × 2 = 12 of them can be used for representing arbitrary 3D rotations as Euler angles. These 12 combinations avoid consecutive rotations around the same axis (such as XXY) which would reduce the degrees of freedom that can be represented.

  3. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    For example, in 2-space n = 2, a rotation by angle θ has eigenvalues λ = e iθ and λ = e −iθ, so there is no axis of rotation except when θ = 0, the case of the null rotation. In 3-space n = 3, the axis of a non-null proper rotation is always a unique line, and a rotation around this axis by angle θ has eigenvalues λ = 1, e iθ, e −iθ.

  4. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    For example, a quarter turn around the positive x-axis followed by a quarter turn around the positive y-axis is a different rotation than the one obtained by first rotating around y and then x. The orthogonal group, consisting of all proper and improper rotations, is generated by reflections.

  5. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  6. Charts on SO (3) - Wikipedia

    en.wikipedia.org/wiki/Charts_on_SO(3)

    Axis angle gives parameters in S 2 × S 1; if we replace the unit vector by the actual axis of rotation, so that n and −n give the same axis line, the set of axis becomes P 2 (R), the real projective plane. But since rotations around n and −n are parameterized by opposite values of θ, the result is an S 1 bundle over P 2 (R), which turns ...

  7. Category:Rotation in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Category:Rotation_in_three...

    This category deals with topics in physics related to the three-dimensional spherical symmetries of physical objects, including topics concerning rotations in classical mechanics, as well as spin and angular momentum in quantum mechanics, and the representations of the Lie groups SU(2) and SO(3).

  8. Axis–angle representation - Wikipedia

    en.wikipedia.org/wiki/Axis–angle_representation

    The angle θ and axis unit vector e define a rotation, concisely represented by the rotation vector θe.. In mathematics, the axis–angle representation parameterizes a rotation in a three-dimensional Euclidean space by two quantities: a unit vector e indicating the direction of an axis of rotation, and an angle of rotation θ describing the magnitude and sense (e.g., clockwise) of the ...

  9. Point groups in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Point_groups_in_three...

    Its subgroup of rotations is the dihedral group D n of order 2n, which still has the 2-fold rotation axes perpendicular to the primary rotation axis, but no mirror planes. Note: in 2D, D n includes reflections, which can also be viewed as flipping over flat objects without distinction of frontside and backside; but in 3D, the two operations are ...