When.com Web Search

  1. Ads

    related to: graphing linear inequalities practice pdf

Search results

  1. Results From The WOW.Com Content Network
  2. Linear inequality - Wikipedia

    en.wikipedia.org/wiki/Linear_inequality

    Two-dimensional linear inequalities are expressions in two variables of the form: + < +, where the inequalities may either be strict or not. The solution set of such an inequality can be graphically represented by a half-plane (all the points on one "side" of a fixed line) in the Euclidean plane. [2]

  3. Crossing number inequality - Wikipedia

    en.wikipedia.org/wiki/Crossing_number_inequality

    Thus we can find a graph with at least e − cr(G) edges and n vertices with no crossings, and is thus a planar graph. But from Euler's formula we must then have e − cr(G) ≤ 3n, and the claim follows. (In fact we have e − cr(G) ≤ 3n − 6 for n ≥ 3). To obtain the actual crossing number inequality, we now use a probabilistic argument.

  4. Fourier–Motzkin elimination - Wikipedia

    en.wikipedia.org/wiki/Fourier–Motzkin_elimination

    Since all the inequalities are in the same form (all less-than or all greater-than), we can examine the coefficient signs for each variable. Eliminating x would yield 2*2 = 4 inequalities on the remaining variables, and so would eliminating y. Eliminating z would yield only 3*1 = 3 inequalities so we use that instead.

  5. Relaxation (iterative method) - Wikipedia

    en.wikipedia.org/wiki/Relaxation_(iterative_method)

    Relaxation methods were developed for solving large sparse linear systems, which arose as finite-difference discretizations of differential equations. [2] [3] They are also used for the solution of linear equations for linear least-squares problems [4] and also for systems of linear inequalities, such as those arising in linear programming.

  6. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    A system of linear inequalities defines a polytope as a feasible region. The simplex algorithm begins at a starting vertex and moves along the edges of the polytope until it reaches the vertex of the optimal solution. Polyhedron of simplex algorithm in 3D. The simplex algorithm operates on linear programs in the canonical form

  7. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    Linear programming (LP), also called linear optimization, is a method to achieve the best outcome (such as maximum profit or lowest cost) in a mathematical model whose requirements and objective are represented by linear relationships. Linear programming is a special case of mathematical programming (also known as mathematical optimization).

  8. Closed graph theorem (functional analysis) - Wikipedia

    en.wikipedia.org/wiki/Closed_graph_theorem...

    The Borel graph theorem, proved by L. Schwartz, shows that the closed graph theorem is valid for linear maps defined on and valued in most spaces encountered in analysis. [10] Recall that a topological space is called a Polish space if it is a separable complete metrizable space and that a Souslin space is the continuous image of a Polish space ...

  9. Constraint (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Constraint_(mathematics)

    The following is a simple optimization problem: = +subject to and =, where denotes the vector (x 1, x 2).. In this example, the first line defines the function to be minimized (called the objective function, loss function, or cost function).