Search results
Results From The WOW.Com Content Network
A linear differential equation that fails this condition is called inhomogeneous. A linear differential equation can be represented as a linear operator acting on y(x) where x is usually the independent variable and y is the dependent variable. Therefore, the general form of a linear homogeneous differential equation is =
In solving mathematical equations, particularly linear simultaneous equations, differential equations and integral equations, the terminology homogeneous is often used for equations with some linear operator L on the LHS and 0 on the RHS. In contrast, an equation with a non-zero RHS is called inhomogeneous or non-homogeneous, as exemplified by ...
As said in the introduction, dimensional homogeneity is the quality of an equation having quantities of same units on both sides. A valid equation in physics must be homogeneous, since equality cannot apply between quantities of different nature. This can be used to spot errors in formula or calculations.
The concept of a homogeneous function was originally introduced for functions of several real variables.With the definition of vector spaces at the end of 19th century, the concept has been naturally extended to functions between vector spaces, since a tuple of variable values can be considered as a coordinate vector.
In mathematics, a differential equation is an equation that relates one or more unknown functions and their derivatives. [1] In applications, the functions generally represent physical quantities, the derivatives represent their rates of change, and the differential equation defines a relationship between the two.
A differential equation has constant coefficients if only constant functions appear as coefficients in the associated homogeneous equation. A solution of a differential equation is a function that satisfies the equation. The solutions of a homogeneous linear differential equation form a vector space. In the ordinary case, this vector space has ...
Boundary value problems are similar to initial value problems.A boundary value problem has conditions specified at the extremes ("boundaries") of the independent variable in the equation whereas an initial value problem has all of the conditions specified at the same value of the independent variable (and that value is at the lower boundary of the domain, thus the term "initial" value).
If homogeneous coordinates of a point are multiplied by a non-zero scalar then the resulting coordinates represent the same point. Since homogeneous coordinates are also given to points at infinity, the number of coordinates required to allow this extension is one more than the dimension of the projective space being considered. For example ...