When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Rhombus - Wikipedia

    en.wikipedia.org/wiki/Rhombus

    Using congruent triangles, one can prove that the rhombus is symmetric across each of these diagonals. It follows that any rhombus has the following properties: Opposite angles of a rhombus have equal measure. The two diagonals of a rhombus are perpendicular; that is, a rhombus is an orthodiagonal quadrilateral. Its diagonals bisect opposite ...

  3. Square - Wikipedia

    en.wikipedia.org/wiki/Square

    The diagonals of a square are (about 1.414) times the length of a side of the square. This value, known as the square root of 2 or Pythagoras' constant, [1] was the first number proven to be irrational. A square can also be defined as a parallelogram with equal diagonals that bisect the angles.

  4. Golden ratio - Wikipedia

    en.wikipedia.org/wiki/Golden_ratio

    All side lengths are equal, but the ratio of the length of sides to the short diagonal in the thin rhombus equals ⁠: ⁠, as does the ratio of the sides of to the long diagonal of the thick rhombus. As with the kite and dart tiling, the areas of the two rhombi are in the golden ratio to each other.

  5. Rhombohedron - Wikipedia

    en.wikipedia.org/wiki/Rhombohedron

    The body diagonal between the acute-angled vertices is the longest. By rotational symmetry about that diagonal, the other three body diagonals, between the three pairs of opposite obtuse-angled vertices, are all the same length.

  6. Parallelepiped - Wikipedia

    en.wikipedia.org/wiki/Parallelepiped

    A perfect parallelepiped is a parallelepiped with integer-length edges, face diagonals, and space diagonals. In 2009, dozens of perfect parallelepipeds were shown to exist, [3] answering an open question of Richard Guy. One example has edges 271, 106, and 103, minor face diagonals 101, 266, and 255, major face diagonals 183, 312, and 323, and ...

  7. Kite (geometry) - Wikipedia

    en.wikipedia.org/wiki/Kite_(geometry)

    One diagonal crosses the midpoint of the other diagonal at a right angle, forming its perpendicular bisector. [9] (In the concave case, the line through one of the diagonals bisects the other.) One diagonal is a line of symmetry. It divides the quadrilateral into two congruent triangles that are mirror images of each other. [7]

  8. US Supreme Court tosses case involving securities fraud suit ...

    www.aol.com/news/us-supreme-court-tosses-case...

    The U.S. Supreme Court sidestepped on Friday a decision on whether to allow shareholders to proceed with a securities fraud lawsuit accusing Meta's Facebook of misleading investors about the ...

  9. Quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Quadrilateral

    where the lengths of the diagonals are p and q and the angle between them is θ. [15] In the case of an orthodiagonal quadrilateral (e.g. rhombus, square, and kite), this formula reduces to = since θ is 90°. The area can be also expressed in terms of bimedians as [16] = ⁡,