Search results
Results From The WOW.Com Content Network
In functional programming, fold (also termed reduce, accumulate, aggregate, compress, or inject) refers to a family of higher-order functions that analyze a recursive data structure and through use of a given combining operation, recombine the results of recursively processing its constituent parts, building up a return value.
Compiled Java code files are generally smaller than code files in C++ as Java bytecode is usually more compact than native machine code and Java programs are never statically linked. C++ compiling features an added textual preprocessing phase, while Java does not. Thus some users add a preprocessing phase to their build process for better ...
For example, a procedure that adds up all elements of a list requires time proportional to the length of the list, if the adding time is constant, or, at least, bounded by a constant. Linear time is the best possible time complexity in situations where the algorithm has to sequentially read its entire input.
Here, complexity refers to the time complexity of performing computations on a multitape Turing machine. [1] See big O notation for an explanation of the notation used. Note: Due to the variety of multiplication algorithms, () below stands in for the complexity of the chosen multiplication algorithm.
Can the fast Fourier transform be computed in o(n log n) time? What is the fastest algorithm for multiplication of two n-digit numbers? What is the lowest possible average-case time complexity of Shellsort with a deterministic fixed gap sequence? Can 3SUM be solved in strongly sub-quadratic time, that is, in time O(n 2−ϵ) for some ϵ>0?
Also, when implemented with the "shortest first" policy, the worst-case space complexity is instead bounded by O(log(n)). Heapsort has O(n) time when all elements are the same. Heapify takes O(n) time and then removing elements from the heap is O(1) time for each of the n elements. The run time grows to O(nlog(n)) if all elements must be distinct.
Here are time complexities [5] of various heap data structures. The abbreviation am. indicates that the given complexity is amortized, otherwise it is a worst-case complexity. For the meaning of "O(f)" and "Θ(f)" see Big O notation. Names of operations assume a max-heap.
Amortized analysis initially emerged from a method called aggregate analysis, which is now subsumed by amortized analysis. The technique was first formally introduced by Robert Tarjan in his 1985 paper Amortized Computational Complexity, [1] which addressed the need for a more useful form of analysis than the common probabilistic methods used.