Ad
related to: how to calculate bolt force
Search results
Results From The WOW.Com Content Network
Bolt thrust or breech pressure is a term used in internal ballistics and firearms (whether small arms or artillery) that describes the amount of rearward force exerted by the propellant gases on the bolt or breech of a firearm action or breech when a projectile is fired. The applied force has both magnitude and direction, making it a vector ...
For example, if a person places a force of 10 N at the terminal end of a wrench that is 0.5 m long (or a force of 10 N acting 0.5 m from the twist point of a wrench of any length), the torque will be 5 N⋅m – assuming that the person moves the wrench by applying force in the plane of movement and perpendicular to the wrench.
To calculate: Given total force at failure (F) and the force-resisting area (e.g. the cross-section of a bolt loaded in shear), ultimate shear strength ...
The shear force only becomes relevant when the bolts are not torqued. A bolt with property class 12.9 has a tensile strength of 1200 MPa (1 MPa = 1 N/mm 2 ) or 1.2 kN/mm 2 and the yield strength is 0.90 times tensile strength, 1080 MPa in this case.
The curve representing a clamped parts-to-bolt stiffness ratio of 0.01 shows that when the relative stiffness of the clamped parts is very low, almost all of the load is transferred to the bolt, down to the point where a compressive load equals the preload, and separation at the bolt head occurs, reducing the force in the bolt to zero.
The force and torque vectors that arise in applying Newton's laws to a rigid body can be assembled into a screw called a wrench. A force has a point of application and a line of action, therefore it defines the Plücker coordinates of a line in space and has zero pitch. A torque, on the other hand, is a pure moment that is not bound to a line ...
The force on a screw is not usually applied at the rim as assumed above. It is often applied by some form of lever; for example a bolt is turned by a wrench whose handle functions as a lever. The mechanical advantage in this case can be calculated by using the length of the lever arm for r in the above equation.
The pressure force on the surface is equal to dF = P × dS = 1 / 2 × P × D × L × dθ. The (y, z) plane is a plane of reflection symmetry, so the x compound of this force is annihilated by the force on the symmetrical surface element. The y compound of this force is equal to: dF y = cos(θ) dF = 1 / 2 × cos(θ) × P × D × ...