When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Reversible reaction - Wikipedia

    en.wikipedia.org/wiki/Reversible_reaction

    A and B can react to form C and D or, in the reverse reaction, C and D can react to form A and B. This is distinct from a reversible process in thermodynamics. Weak acids and bases undergo reversible reactions. For example, carbonic acid: H 2 CO 3 (l) + H 2 O (l) ⇌ HCO 3 − (aq) + H 3 O + (aq).

  3. Helmholtz free energy - Wikipedia

    en.wikipedia.org/wiki/Helmholtz_free_energy

    From the German word Arbeit (work), the International Union of Pure and Applied Chemistry (IUPAC) recommends the symbol A and the name Helmholtz energy. [2] In physics , the symbol F is also used in reference to free energy or Helmholtz function .

  4. Reversible process (thermodynamics) - Wikipedia

    en.wikipedia.org/wiki/Reversible_process...

    Reversible adiabatic process: The state on the left can be reached from the state on the right as well as vice versa without exchanging heat with the environment. In some cases, it may be important to distinguish between reversible and quasistatic processes. Reversible processes are always quasistatic, but the converse is not always true. [2]

  5. List of common physics notations - Wikipedia

    en.wikipedia.org/wiki/List_of_common_physics...

    Symbol Name Meaning SI unit of measure alpha: alpha particle: angular acceleration: radian per second squared (rad/s 2) fine-structure constant: unitless beta: velocity in terms of the speed of light c: unitless beta particle: gamma: Lorentz factor: unitless photon: gamma ray: shear strain: radian

  6. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    Chemical reactions cause changes in entropy and system entropy, in conjunction with enthalpy, plays an important role in determining in which direction a chemical reaction spontaneously proceeds. One dictionary definition of entropy is that it is "a measure of thermal energy per unit temperature that is not available for useful work" in a ...

  7. Gibbs free energy - Wikipedia

    en.wikipedia.org/wiki/Gibbs_free_energy

    In thermodynamics, the Gibbs free energy (or Gibbs energy as the recommended name; symbol ) is a thermodynamic potential that can be used to calculate the maximum amount of work, other than pressure–volume work, that may be performed by a thermodynamically closed system at constant temperature and pressure.

  8. Chemical equilibrium - Wikipedia

    en.wikipedia.org/wiki/Chemical_equilibrium

    The concept of chemical equilibrium was developed in 1803, after Berthollet found that some chemical reactions are reversible. [4] For any reaction mixture to exist at equilibrium, the rates of the forward and backward (reverse) reactions must be equal.

  9. Thermodynamic free energy - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_free_energy

    This definition of free energy is useful for gas-phase reactions or in physics when modeling the behavior of isolated systems kept at a constant volume. For example, if a researcher wanted to perform a combustion reaction in a bomb calorimeter, the volume is kept constant throughout the course of a reaction.