Ads
related to: examples of groups in multiplication
Search results
Results From The WOW.Com Content Network
The group scheme of n-th roots of unity is by definition the kernel of the n-power map on the multiplicative group GL(1), considered as a group scheme.That is, for any integer n > 1 we can consider the morphism on the multiplicative group that takes n-th powers, and take an appropriate fiber product of schemes, with the morphism e that serves as the identity.
A periodic wallpaper pattern gives rise to a wallpaper group. Examples and applications of groups abound. A starting point is the group of integers with addition as group operation, introduced above. If instead of addition multiplication is considered, one obtains multiplicative groups.
Integer multiplication respects the congruence classes, that is, a ≡ a' and b ≡ b' (mod n) implies ab ≡ a'b' (mod n). This implies that the multiplication is associative, commutative, and that the class of 1 is the unique multiplicative identity. Finally, given a, the multiplicative inverse of a modulo n is an integer x satisfying ax ≡ ...
The group {1, −1} above and the cyclic group of order 3 under ordinary multiplication are both examples of abelian groups, and inspection of the symmetry of their Cayley tables verifies this. In contrast, the smallest non-abelian group, the dihedral group of order 6, does not have a symmetric Cayley table.
For example, multiplying the lengths (in meters or feet) of the two sides of a rectangle gives its area (in square meters or square feet). Such a product is the subject of dimensional analysis. The inverse operation of multiplication is division. For example, since 4 multiplied by 3 equals 12, 12 divided by 3 equals 4.
An (R,S)-bimodule is an abelian group together with both a left scalar multiplication · by elements of R and a right scalar multiplication ∗ by elements of S, making it simultaneously a left R-module and a right S-module, satisfying the additional condition (r · x) ∗ s = r ⋅ (x ∗ s) for all r in R, x in M, and s in S.