Search results
Results From The WOW.Com Content Network
For an adiabatic free expansion of an ideal gas, the gas is contained in an insulated container and then allowed to expand in a vacuum. Because there is no external pressure for the gas to expand against, the work done by or on the system is zero.
The Joule expansion (a subset of free expansion) is an irreversible process in thermodynamics in which a volume of gas is kept in one side of a thermally isolated container (via a small partition), with the other side of the container being evacuated. The partition between the two parts of the container is then opened, and the gas fills the ...
The net work equals the area inside because it is (a) the Riemann sum of work done on the substance due to expansion, minus (b) the work done to re-compress. Because the net variation in state properties during a thermodynamic cycle is zero, it forms a closed loop on a P-V diagram .
Under other conditions, free-energy change is not equal to work; for instance, for a reversible adiabatic expansion of an ideal gas, =. Importantly, for a heat engine, including the Carnot cycle , the free-energy change after a full cycle is zero, Δ cyc A = 0 {\displaystyle \Delta _{\text{cyc}}A=0} , while the engine produces nonzero work.
adiabatic process – expansion isobaric process – heat rejection The idealized Brayton cycle where P = pressure, v = volume, T = temperature, s = entropy, and q = the heat added to or rejected by the system.
Ratio of isobaric to isochoric heat capacity, heat capacity ratio, adiabatic index, Laplace coefficient ... Free expansion = Work done by an expanding gas ...
Enjoy a classic game of Hearts and watch out for the Queen of Spades!
Adiabatic process: occurs without loss or gain of energy by heat; Isenthalpic process: occurs at a constant enthalpy; Isentropic process: a reversible adiabatic process, occurs at a constant entropy; Isobaric process: occurs at constant pressure; Isochoric process: occurs at constant volume (also called isometric/isovolumetric)