Search results
Results From The WOW.Com Content Network
A second version of the central dogma is popular but incorrect. This is the simplistic DNA → RNA → protein pathway published by James Watson in the first edition of The Molecular Biology of the Gene (1965). Watson's version differs from Crick's because Watson describes a two-step (DNA → RNA and RNA → protein) process as the central ...
The gene is a unit of hereditary information that exists in many physical copies in the world, and which particular physical copy will be replicated and originate new copies does not matter from the gene's point of view. [20] A selfish gene could be favored by selection by producing altruism among organisms containing it.
The flow of genetic information within a cell. DNA is initially transcribed into a messenger RNA (mRNA) molecule. The mRNA is then translated into a protein. (See Central dogma of molecular biology.) mRNA structure, approximately to scale for a human mRNA
This image shows an example of the central dogma using a DNA strand being transcribed then translated and showing important enzymes used in the processes. The central dogma plays a key role in the study of molecular genetics. The central dogma states that DNA replicates itself, DNA is transcribed into RNA, and RNA is translated into proteins. [24]
All of these processes form part of the central dogma of molecular biology, which describes the flow of genetic information in a biological system. As in DNA, genetic information in mRNA is contained in the sequence of nucleotides, which are arranged into codons consisting of three ribonucleotides each.
The pathway from DNA to protein expression fundamental to the central dogma of biology. [2] In 1956, Francis Crick proposed what is now known as the "central dogma" of biology: [3] DNA encodes the genetic information required for an organism to carry out its life cycle. In effect, DNA serves as the "hard drive" which stores genetic data.
It was formulated by Francis Crick in 1955 in an informal publication of the RNA Tie Club, and later elaborated in 1957 along with the central dogma of molecular biology and the sequence hypothesis. It was formally published as an article "On protein synthesis" in 1958. The name "adaptor hypothesis" was given by Sydney Brenner.
The central dogma of molecular biology outlines the mechanism by which proteins are constructed using information contained in nucleic acids. DNA is transcribed into mRNA molecules, which travel to the ribosome where the mRNA is used as a template for the construction of the protein strand.