Search results
Results From The WOW.Com Content Network
Having established that transcription and translation are linked biochemically (translation depends on the product of transcription), an outstanding question remained whether they were linked physically - whether the newly synthesized mRNA released from the DNA before it is translated, or if can translation occur concurrently with transcription.
Bacterial transcription differs from eukaryotic transcription in several ways. In bacteria, transcription and translation can occur simultaneously in the cytoplasm of the cell, whereas in eukaryotes transcription occurs in the nucleus and translation occurs in the cytoplasm. [14]
In bacteria, translation initiation occurs as soon as the 5' end of an mRNA is synthesized, and translation and transcription are coupled. This is not possible in eukaryotes because transcription and translation are carried out in separate compartments of the cell (the nucleus and cytoplasm).
A eukaryotic cell has a nucleus that separates the processes of transcription and translation. Eukaryotic transcription occurs within the nucleus where DNA is packaged into nucleosomes and higher order chromatin structures. The complexity of the eukaryotic genome necessitates a great variety and complexity of gene expression control.
Prokaryotic DNA Replication is the process by which a prokaryote duplicates its DNA into another copy that is passed on to daughter cells. [1] Although it is often studied in the model organism E. coli, other bacteria show many similarities. [2] Replication is bi-directional and originates at a single origin of replication (OriC). [3]
Within eukaryotes, DNA replication is controlled within the context of the cell cycle. As the cell grows and divides, it progresses through stages in the cell cycle; DNA replication takes place during the S phase (synthesis phase). The progress of the eukaryotic cell through the cycle is controlled by cell cycle checkpoints.
Polyadenylation occurs during and/or immediately after transcription of DNA into RNA. After transcription has been terminated, the mRNA chain is cleaved through the action of an endonuclease complex associated with RNA polymerase. After the mRNA has been cleaved, around 250 adenosine residues are added to the free 3' end at the cleavage site.
The hallmark difference of elongation in eukaryotes in comparison to prokaryotes is its separation from transcription. While prokaryotes are able to undergo both cellular processes simultaneously, the spatial separation that is provided by the nuclear membrane prevents this coupling in eukaryotes.