Search results
Results From The WOW.Com Content Network
To use column-major order in a row-major environment, or vice versa, for whatever reason, one workaround is to assign non-conventional roles to the indexes (using the first index for the column and the second index for the row), and another is to bypass language syntax by explicitly computing positions in a one-dimensional array.
Illustration of row- and column-major order. Matrix representation is a method used by a computer language to store column-vector matrices of more than one dimension in memory. Fortran and C use different schemes for their native arrays. Fortran uses "Column Major" , in which all the elements for a given column are stored contiguously in memory.
For example, with a matrix stored in row-major order, the rows of the matrix are contiguous in memory and the columns are discontiguous. If repeated operations need to be performed on the columns, for example in a fast Fourier transform algorithm (e.g. Frigo & Johnson, 2005), transposing the matrix in memory (to make the columns contiguous) may ...
A programmer (or a sophisticated compiler) may use this information to choose between row- or column-major layout for each array. For example, when computing the product A·B of two matrices, it would be best to have A stored in row-major order, and B in column-major order.
The definition of matrix multiplication is that if C = AB for an n × m matrix A and an m × p matrix B, then C is an n × p matrix with entries = =. From this, a simple algorithm can be constructed which loops over the indices i from 1 through n and j from 1 through p, computing the above using a nested loop:
Illustration of row- and column-major order On a computer , one can often avoid explicitly transposing a matrix in memory by simply accessing the same data in a different order. For example, software libraries for linear algebra , such as BLAS , typically provide options to specify that certain matrices are to be interpreted in transposed order ...
Illustration of row- and column-major order. The simplest cache-oblivious algorithm presented in Frigo et al. is an out-of-place matrix transpose operation (in-place algorithms have also been devised for transposition, but are much more complex for non-square matrices). Given m×n array A and n×m array B, we would like to store the transpose ...
The transpose (indicated by T) of any row vector is a column vector, and the transpose of any column vector is a row vector: […] = [] and [] = […]. The set of all row vectors with n entries in a given field (such as the real numbers ) forms an n -dimensional vector space ; similarly, the set of all column vectors with m entries forms an m ...