Search results
Results From The WOW.Com Content Network
where ρ f is the density of the fluid, V disp is the volume of the displaced body of liquid, and g is the gravitational acceleration at the location in question. If this volume of liquid is replaced by a solid body of exactly the same shape, the force the liquid exerts on it must be exactly the same as above.
An exciton is a bound state of an electron and an electron hole which are attracted to each other by the electrostatic Coulomb force resulting from their opposite charges. It is an electrically neutral quasiparticle regarded as an elementary excitation primarily in condensed matter, such as insulators, semiconductors, some metals, and in some liquids.
For electrons or electron holes in a solid, the effective mass is usually stated as a factor multiplying the rest mass of an electron, m e (9.11 × 10 −31 kg). This factor is usually in the range 0.01 to 10, but can be lower or higher—for example, reaching 1,000 in exotic heavy fermion materials , or anywhere from zero to infinity ...
In particle physics, the electron mass (symbol: m e) is the mass of a stationary electron, also known as the invariant mass of the electron. It is one of the fundamental constants of physics . It has a value of about 9.109 × 10 −31 kilograms or about 5.486 × 10 −4 daltons , which has an energy-equivalent of about 8.187 × 10 −14 joules ...
where is the electron charge, is the linearly polarised electric field amplitude, is the laser carrier frequency and is the electron mass. In terms of the laser intensity I {\displaystyle I} , using I = c ϵ 0 E 2 / 2 {\displaystyle I=c\epsilon _{0}E^{2}/2} , it reads less simply:
In the image, the vector F 1 is the force experienced by q 1, and the vector F 2 is the force experienced by q 2. When q 1 q 2 > 0 the forces are repulsive (as in the image) and when q 1 q 2 < 0 the forces are attractive (opposite to the image). The magnitude of the forces will always be equal.
When charged particles move in electric and magnetic fields the following two laws apply: Lorentz force law: = (+),; Newton's second law of motion: = =; where F is the force applied to the ion, m is the mass of the particle, a is the acceleration, Q is the electric charge, E is the electric field, and v × B is the cross product of the ion's velocity and the magnetic flux density.
In atomic physics, the effective nuclear charge of an electron in a multi-electron atom or ion is the number of elementary charges an electron experiences by the nucleus. It is denoted by Z eff . The term "effective" is used because the shielding effect of negatively charged electrons prevent higher energy electrons from experiencing the full ...