Search results
Results From The WOW.Com Content Network
Klein quartic with 28 geodesics (marked by 7 colors and 4 patterns). In geometry, a geodesic (/ ˌ dʒ iː. ə ˈ d ɛ s ɪ k,-oʊ-,-ˈ d iː s ɪ k,-z ɪ k /) [1] [2] is a curve representing in some sense the locally [a] shortest [b] path between two points in a surface, or more generally in a Riemannian manifold.
Vincenty's formulae are two related iterative methods used in geodesy to calculate the distance between two points on the surface of a spheroid, developed by Thaddeus Vincenty (1975a). They are based on the assumption that the figure of the Earth is an oblate spheroid, and hence are more accurate than methods that assume a spherical Earth, such ...
Geodesic on an oblate ellipsoid. An ellipsoid approximates the surface of the Earth much better than a sphere or a flat surface does. The shortest distance along the surface of an ellipsoid between two points on the surface is along the geodesic. Geodesics follow more complicated paths than great circles and in particular, they usually don't ...
The shortest path between two points on a spheroid is known as a geodesic. Such paths are developed using differential geometry. The equator and meridians are great ellipses that are also geodesics [a]. The maximum difference in length between a great ellipse and the corresponding geodesic of length 5,000 nautical miles is about 10.5 meters.
A metric space defined over a set of points in terms of distances in a graph defined over the set is called a graph metric. The vertex set (of an undirected graph) and the distance function form a metric space, if and only if the graph is connected. The eccentricity ϵ(v) of a vertex v is the greatest distance between v and any other vertex; in ...
Solving the geodesic equations is a procedure used in mathematics, particularly Riemannian geometry, and in physics, particularly in general relativity, that results in obtaining geodesics. Physically, these represent the paths of (usually ideal) particles with no proper acceleration , their motion satisfying the geodesic equations.
In geodesy and navigation, a meridian arc is the curve between two points near the Earth's surface having the same longitude. The term may refer either to a segment of the meridian, or to its length. Both the practical determination of meridian arcs (employing measuring instruments in field campaigns) as well as its theoretical calculation ...
For Riemannian geometries, beyond a conjugate point, the geodesic is no longer locally the shortest path between points, as there are nearby paths that are shorter. This is analogous to the Earth's surface, where the geodesic between two points along a great circle is the shortest route only up to the antipodal point; beyond that, there are ...