When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    d() is the number of positive divisors of n, including 1 and n itself; σ() is the sum of the positive divisors of n, including 1 and n itselfs() is the sum of the proper divisors of n, including 1 but not n itself; that is, s(n) = σ(n) − n

  3. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The divisors of n are all products of some or all prime factors of n (including the empty product 1 of no prime factors). The number of divisors can be computed by increasing all multiplicities by 1 and then multiplying them. Divisors and properties related to divisors are shown in table of divisors.

  4. Unitary divisor - Wikipedia

    en.wikipedia.org/wiki/Unitary_divisor

    Every divisor of n is unitary if and only if n is square-free. The set of all unitary divisors of n forms a Boolean algebra with meet given by the greatest common divisor and join by the least common multiple. Equivalently, the set of unitary divisors of n forms a Boolean ring, where the addition and multiplication are given by

  5. Hall subgroup - Wikipedia

    en.wikipedia.org/wiki/Hall_subgroup

    For example, to find the Hall divisors of 60, its prime power factorization is 2 2 × 3 × 5, so one takes any product of 3, 2 2 = 4, and 5. Thus, the Hall divisors of 60 are 1, 3, 4, 5, 12, 15, 20, and 60. A Hall subgroup of G is a subgroup whose order is a Hall divisor of the order of G. In other words, it is a subgroup whose order is coprime ...

  6. Deficient number - Wikipedia

    en.wikipedia.org/wiki/Deficient_number

    Equivalently, it is a number for which the sum of proper divisors (or aliquot sum) is less than n. For example, the proper divisors of 8 are 1, 2, and 4, and their sum is less than 8, so 8 is deficient. Denoting by σ(n) the sum of divisors, the value 2n – σ(n) is called the number's deficiency.

  7. Aliquot sum - Wikipedia

    en.wikipedia.org/wiki/Aliquot_sum

    In number theory, the aliquot sum s(n) of a positive integer n is the sum of all proper divisors of n, that is, all divisors of n other than n itself. That is, = |,. It can be used to characterize the prime numbers, perfect numbers, sociable numbers, deficient numbers, abundant numbers, and untouchable numbers, and to define the aliquot sequence of a number.

  8. Highly abundant number - Wikipedia

    en.wikipedia.org/wiki/Highly_abundant_number

    In number theory, a highly abundant number is a natural number with the property that the sum of its divisors (including itself) is greater than the sum of the divisors of any smaller natural number. Highly abundant numbers and several similar classes of numbers were first introduced by Pillai ( 1943 ), and early work on the subject was done by ...

  9. Square-free integer - Wikipedia

    en.wikipedia.org/wiki/Square-free_integer

    The square-free part of an integer may be smaller than the largest square-free divisor, which is =. Any arbitrary positive integer n {\displaystyle n} can be represented in a unique way as the product of a square and a square-free integer: n = m 2 k {\displaystyle n=m^{2}k} In this factorization, m {\displaystyle m} is the largest divisor of n ...

  1. Related searches geeks for print all divisors of 8 and 10 and 12 pdf free

    table of divisorsgeeks for print all divisors of 8 and 10 and 12 pdf free download
    table of positive divisors