Search results
Results From The WOW.Com Content Network
In botany, a light curve shows the photosynthetic response of leaf tissue or algal communities to varying light intensities. The shape of the curve illustrates the principle of limiting factors; in low light levels, the rate of photosynthesis is limited by the concentration of chlorophyll and the efficiency of the light-dependent reactions, but in higher light levels it is limited by the ...
The PI (or photosynthesis-irradiance) curve is a graphical representation of the empirical relationship between solar irradiance and photosynthesis. A derivation of the Michaelis–Menten curve, it shows the generally positive correlation between light intensity and photosynthetic rate. It is a plot of photosynthetic rate as a function of light ...
The light compensation point (I c) is the light intensity on the light curve where the rate of photosynthesis exactly matches the rate of cellular respiration.At this point, the uptake of CO 2 through photosynthetic pathways is equal to the respiratory release of carbon dioxide, and the uptake of O 2 by respiration is equal to the photosynthetic release of oxygen.
The red curve in the graph shows that photons around 610 nm (orange-red) have the highest amount of photosynthesis per photon. However, because short-wavelength photons carry more energy per photon, the maximum amount of photosynthesis per incident unit of energy is at a longer wavelength, around 650 nm (deep red).
The Emerson effect is the increase in the rate of photosynthesis after chloroplasts are exposed to light of wavelength less than 680 nm (deep red spectrum) and more than 680 nm (far red spectrum). When simultaneously exposed to light of both wavelengths, the rate of photosynthesis is higher than the sum of the red light and far red light ...
Photosynthesis increases linearly with light intensity at low intensity, but at higher intensity this is no longer the case (see Photosynthesis-irradiance curve). Above about 10,000 lux or ~100 watts/square meter the rate no longer increases. Thus, most plants can only use ~10% of full mid-day sunlight intensity. [6]
The daily light integral (DLI) is the number of photosynthetically active photons (photons in the PAR range) accumulated in a square meter over the course of a day. It is a function of photosynthetic light intensity and duration (day length) and is usually expressed as moles of light (mol photons) per square meter (m −2) per day (d −1), or: mol·m −2 ·d −1.
Growth towards a light source is called positive phototropism, while growth away from light is called negative phototropism. Negative phototropism is not to be confused with skototropism, which is defined as the growth towards darkness, whereas negative phototropism can refer to either the growth away from a light source or towards the darkness ...