When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fundamental frequency - Wikipedia

    en.wikipedia.org/wiki/Fundamental_frequency

    A harmonic is any member of the harmonic series, an ideal set of frequencies that are positive integer multiples of a common fundamental frequency. The reason a fundamental is also considered a harmonic is because it is 1 times itself. [11] The fundamental is the frequency at which the entire wave vibrates.

  3. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    The angular frequency of the underdamped harmonic oscillator is given by =, the exponential decay of the underdamped harmonic oscillator is given by =. The Q factor of a damped oscillator is defined as Q = 2 π × energy stored energy lost per cycle . {\displaystyle Q=2\pi \times {\frac {\text{energy stored}}{\text{energy lost per cycle}}}.}

  4. Wavenumber - Wikipedia

    en.wikipedia.org/wiki/Wavenumber

    Diagram illustrating the relationship between the wavenumber and the other properties of harmonic waves. In the physical sciences, the wavenumber (or wave number), also known as repetency, [1] is the spatial frequency of a wave, measured in cycles per unit distance (ordinary wavenumber) or radians per unit distance (angular wavenumber).

  5. Harmonic - Wikipedia

    en.wikipedia.org/wiki/Harmonic

    In physics, acoustics, and telecommunications, a harmonic is a sinusoidal wave with a frequency that is a positive integer multiple of the fundamental frequency of a periodic signal. The fundamental frequency is also called the 1st harmonic ; the other harmonics are known as higher harmonics .

  6. Triangle wave - Wikipedia

    en.wikipedia.org/wiki/Triangle_wave

    Animation of the additive synthesis of a triangle wave with an increasing number of harmonics. See Fourier Analysis for a mathematical description.. It is possible to approximate a triangle wave with additive synthesis by summing odd harmonics of the fundamental while multiplying every other odd harmonic by −1 (or, equivalently, changing its phase by π) and multiplying the amplitude of the ...

  7. Harmonics (electrical power) - Wikipedia

    en.wikipedia.org/wiki/Harmonics_(electrical_power)

    The zero sequence harmonics of a set of three-phase distorted (non-sinusoidal) periodic signals are harmonics that are in phase in time for a given frequency or order. It can be proven the zero sequence harmonics are harmonics whose frequency is an integer multiple of the frequency of the third harmonics. [6] So, their order is given by:

  8. Total harmonic distortion - Wikipedia

    en.wikipedia.org/wiki/Total_harmonic_distortion

    When the main performance criterion is the "purity" of the original sine wave (in other words, the contribution of the original frequency with respect to its harmonics), the measurement is most commonly defined as the ratio of the RMS amplitude of a set of higher harmonic frequencies to the RMS amplitude of the first harmonic, or fundamental ...

  9. Harmonic analysis - Wikipedia

    en.wikipedia.org/wiki/Harmonic_analysis

    Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.