Search results
Results From The WOW.Com Content Network
There are several closely related functions called Jacobi theta functions, and many different and incompatible systems of notation for them. One Jacobi theta function (named after Carl Gustav Jacob Jacobi) is a function defined for two complex variables z and τ, where z can be any complex number and τ is the half-period ratio, confined to the upper half-plane, which means it has a positive ...
Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Applied Mathematics Series. Applied Mathematics Series. Vol. 55 (Ninth reprint with additional corrections of tenth original printing with corrections (December 1972); first ed.).
The Neville theta functions are related to the Jacobi elliptic functions. If pq(u,m) is a Jacobi elliptic function (p and q are one of s,c,n,d), then If pq(u,m) is a Jacobi elliptic function (p and q are one of s,c,n,d), then
In mathematics, particularly q-analog theory, the Ramanujan theta function generalizes the form of the Jacobi theta functions, while capturing their general properties. In particular, the Jacobi triple product takes on a particularly elegant form when written in terms of the Ramanujan theta. The function is named after mathematician Srinivasa ...
In mathematics, the q-theta function (or modified Jacobi theta function) is a type of q-series which is used to define elliptic hypergeometric series. [ 1 ] [ 2 ] It is given by θ ( z ; q ) := ∏ n = 0 ∞ ( 1 − q n z ) ( 1 − q n + 1 / z ) {\displaystyle \theta (z;q):=\prod _{n=0}^{\infty }(1-q^{n}z)\left(1-q^{n+1}/z\right)}
This formula applies to any algebraic equation of any degree without need for a Tschirnhaus transformation or any other manipulation to bring the equation into a specific normal form, such as the Bring–Jerrard form for the quintic. However, application of this formula in practice is difficult because the relevant hyperelliptic integrals and ...
A simple arithmetic calculator was first included with Windows 1.0. [5]In Windows 3.0, a scientific mode was added, which included exponents and roots, logarithms, factorial-based functions, trigonometry (supports radian, degree and gradians angles), base conversions (2, 8, 10, 16), logic operations, statistical functions such as single variable statistics and linear regression.
with the sum on the right similar to the Ramanujan theta function, or Jacobi theta function (). Note that Lambert series in which the a n are trigonometric functions, for example, a n = sin(2n x), can be evaluated by various combinations of the logarithmic derivatives of Jacobi theta functions.