When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Empirical distribution function - Wikipedia

    en.wikipedia.org/wiki/Empirical_distribution...

    In R software, we compute an empirical cumulative distribution function, with several methods for plotting, printing and computing with such an “ecdf” object. In MATLAB we can use Empirical cumulative distribution function (cdf) plot; jmp from SAS, the CDF plot creates a plot of the empirical cumulative distribution function.

  3. Logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Logistic_distribution

    The inverse cumulative distribution function (quantile function) of the logistic distribution is a generalization of the logit function. Its derivative is called the quantile density function. They are defined as follows: (;,) = + ⁡ ().

  4. Weibull distribution - Wikipedia

    en.wikipedia.org/wiki/Weibull_distribution

    Weibull plot. The fit of a Weibull distribution to data can be visually assessed using a Weibull plot. [17] The Weibull plot is a plot of the empirical cumulative distribution function ^ of data on special axes in a type of Q–Q plot.

  5. Cumulative distribution function - Wikipedia

    en.wikipedia.org/wiki/Cumulative_distribution...

    Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .

  6. Erlang distribution - Wikipedia

    en.wikipedia.org/wiki/Erlang_distribution

    Because of the factorial function in the denominator of the PDF and CDF, the Erlang distribution is only defined when the parameter k is a positive integer. In fact, this distribution is sometimes called the Erlang- k distribution (e.g., an Erlang-2 distribution is an Erlang distribution with k = 2 {\displaystyle k=2} ).

  7. Triangular distribution - Wikipedia

    en.wikipedia.org/wiki/Triangular_distribution

    This distribution for a = 0, b = 1 and c = 0.5—the mode (i.e., the peak) is exactly in the middle of the interval—corresponds to the distribution of the mean of two standard uniform variables, that is, the distribution of X = (X 1 + X 2) / 2, where X 1, X 2 are two independent random variables with standard uniform distribution in [0, 1]. [1]

  8. Log-logistic distribution - Wikipedia

    en.wikipedia.org/wiki/Log-logistic_distribution

    The one shown here gives reasonably interpretable parameters and a simple form for the cumulative distribution function. [ 4 ] [ 5 ] The parameter α > 0 {\displaystyle \alpha >0} is a scale parameter and is also the median of the distribution.

  9. Truncated normal distribution - Wikipedia

    en.wikipedia.org/wiki/Truncated_normal_distribution

    One such truncated normal generator (implemented in Matlab and in R (programming language) as trandn.R) is based on an acceptance rejection idea due to Marsaglia. [10] Despite the slightly suboptimal acceptance rate of Marsaglia (1964) in comparison with Robert (1995) , Marsaglia's method is typically faster, [ 9 ] because it does not require ...