Search results
Results From The WOW.Com Content Network
The bearing capacity of soil is the maximum average contact pressure between the foundation and the soil which should not produce shear failure in the soil. Ultimate bearing capacity is the theoretical maximum pressure which can be supported without failure; allowable bearing capacity is the ultimate bearing capacity divided by a factor of safety.
The bearing capacity of soil is the average contact stress between a foundation and the soil which will cause shear failure in the soil. Allowable bearing stress is the bearing capacity divided by a factor of safety.
An example of lateral earth pressure overturning a retaining wall. The lateral earth pressure is the pressure that soil exerts in the horizontal direction. It is important because it affects the consolidation behavior and strength of the soil and because it is considered in the design of geotechnical engineering structures such as retaining walls, basements, tunnels, deep foundations and ...
Rankine's theory (maximum-normal stress theory), developed in 1857 by William John Macquorn Rankine, [1] is a stress field solution that predicts active and passive earth pressure. It assumes that the soil is cohesionless, the wall is frictionless, the soil-wall interface is vertical, the failure surface on which the soil moves is planar, and ...
The cone penetration or cone penetrometer test (CPT) is a method used to determine the geotechnical engineering properties of soils and delineating soil stratigraphy. It was initially developed in the 1950s at the Dutch Laboratory for Soil Mechanics in Delft to investigate soft soils. Based on this history it has also been called the "Dutch ...
Symbol used in drawings Standard penetration test N values from a surficial aquifer in south Florida.. The standard penetration test (SPT) is an in-situ dynamic penetration test designed to provide information on the geotechnical engineering properties of soil.
Terzaghi's principle applies well to porous materials whose solid constituents are incompressible - soil, for example, is composed of grains of incompressible silica so that the volume change in soil during consolidation is due solely to the rearrangement of these constituents with respect to one another.
Structural loads from a column or wall are usually greater than 1,000 kPa, while the soil's bearing capacity is commonly less than that (typically less than 400 kPa). By possessing a larger bearing area, the foundation distributes the pressure to the soil, decreasing the bearing pressure to within allowable values. [2]