When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Time derivative - Wikipedia

    en.wikipedia.org/wiki/Time_derivative

    A time derivative is a derivative of a function with ... ch. 1-3 One situation involves a stock variable and its time derivative, a flow variable. Examples include: ...

  3. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  4. Total derivative - Wikipedia

    en.wikipedia.org/wiki/Total_derivative

    In mathematics, the total derivative of a function f at a point is the best linear approximation near this point of the function with respect to its arguments. Unlike partial derivatives, the total derivative approximates the function with respect to all of its arguments, not just a single one. In many situations, this is the same as ...

  5. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Further time derivatives have also been named, as snap or jounce (fourth derivative), crackle (fifth derivative), and pop (sixth derivative). [12] [13] The seventh derivative is known as "Bang," as it is a logical continuation to the cycle. The eighth derivative has been referred to as "Boom," and the 9th is known as "Crash."

  6. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    Suppose that a function represents the position of an object at the time. The first derivative of that function is the velocity of an object with respect to time, the second derivative of the function is the acceleration of an object with respect to time, [29] and the third derivative is the jerk. [36]

  7. Leibniz integral rule - Wikipedia

    en.wikipedia.org/wiki/Leibniz_integral_rule

    With those tools, the Leibniz integral rule in n dimensions is [4] = () + + ˙, where Ω(t) is a time-varying domain of integration, ω is a p-form, = is the vector field of the velocity, denotes the interior product with , d x ω is the exterior derivative of ω with respect to the space variables only and ˙ is the time derivative of ω.

  8. Fractional calculus - Wikipedia

    en.wikipedia.org/wiki/Fractional_calculus

    The -th derivative of a function at a point is a local property only when is an integer; this is not the case for non-integer power derivatives. In other words, a non-integer fractional derivative of f {\displaystyle f} at x = c {\displaystyle x=c} depends on all values of f {\displaystyle f} , even those far away from c {\displaystyle c} .

  9. Calculus - Wikipedia

    en.wikipedia.org/wiki/Calculus

    If the input of the function represents time, then the derivative represents change concerning time. For example, if f is a function that takes time as input and gives the position of a ball at that time as output, then the derivative of f is how the position is changing in time, that is, it is the velocity of the ball. [30]: 18–20