Search results
Results From The WOW.Com Content Network
Quantum mechanics is a fundamental theory that describes the behavior of nature at and below the scale of atoms. [2]: 1.1 It is the foundation of all quantum physics, which includes quantum chemistry, quantum field theory, quantum technology, and quantum information science. Quantum mechanics can describe many systems that classical physics cannot.
The idea of quantum field theory began in the late 1920s with British physicist Paul Dirac, when he attempted to quantize the energy of the electromagnetic field; just as in quantum mechanics the energy of an electron in the hydrogen atom was quantized. Quantization is a procedure for constructing a quantum theory starting from a classical theory.
Uncertainty principle of Heisenberg, 1927. The uncertainty principle, also known as Heisenberg's indeterminacy principle, is a fundamental concept in quantum mechanics. It states that there is a limit to the precision with which certain pairs of physical properties, such as position and momentum, can be simultaneously known. In other words, the ...
Quantum superposition is a fundamental principle of quantum mechanics that states that linear combinations of solutions to the Schrödinger equation are also solutions of the Schrödinger equation. This follows from the fact that the Schrödinger equation is a linear differential equation in time and position.
The Principles of Quantum Mechanics is an influential monograph on quantum mechanics written by Paul Dirac and first published by Oxford University Press in 1930. [1] Dirac gives an account of quantum mechanics by "demonstrating how to construct a completely new theoretical framework from scratch"; "problems were tackled top-down, by working on the great principles, with the details left to ...
In physics, complementarity is a conceptual aspect of quantum mechanics that Niels Bohr regarded as an essential feature of the theory. [1] [2] The complementarity principle holds that certain pairs of complementary properties cannot all be observed or measured simultaneously.
Quantum mechanics is intrinsically indeterministic. The correspondence principle: in the appropriate limit, quantum theory comes to resemble classical physics and reproduces the classical predictions. The Born rule: the wave function of a system yields probabilities for the outcomes of measurements upon that system.
The end of the first era of quantum mechanics was triggered by de Broglie's publication of his hypothesis of matter waves, [1]: 268 leading to Schrödinger's discovery of wave mechanics for matter. Accurate predictions of the absorption spectrum of hydrogen ensured wide acceptance of the new quantum theory. [1]: 275