When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Enzyme catalysis - Wikipedia

    en.wikipedia.org/wiki/Enzyme_catalysis

    Enzyme catalysis is the increase in the rate of a process by an "enzyme", a biological molecule. Most enzymes are proteins, and most such processes are chemical reactions. Within the enzyme, generally catalysis occurs at a localized site, called the active site.

  3. Turnover number - Wikipedia

    en.wikipedia.org/wiki/Turnover_number

    In enzymology, the turnover number (k cat) is defined as the limiting number of chemical conversions of substrate molecules per second that a single active site will execute for a given enzyme concentration [E T] for enzymes with two or more active sites. [1] For enzymes with a single active site, k cat is referred to as the catalytic constant. [2]

  4. Biocatalysis - Wikipedia

    en.wikipedia.org/wiki/Biocatalysis

    Regioselectivity and diastereoselectivity: Due to their complex three-dimensional structure, enzymes may distinguish between functional groups which are chemically situated in different regions of the substrate molecule. Enantioselectivity: Since almost all enzymes are made from L-amino acids, enzymes are chiral catalysts. As a consequence, any ...

  5. Catalytic triad - Wikipedia

    en.wikipedia.org/wiki/Catalytic_triad

    The triad base is therefore preferentially oriented to protonate the leaving group amide to ensure that it is ejected to leave the enzyme sulfur covalently bound to the substrate N-terminus. Finally, resolution of the acyl-enzyme (to release the substrate C-terminus) requires serine to be re-protonated whereas cysteine can leave as S −.

  6. Biosynthesis - Wikipedia

    en.wikipedia.org/wiki/Biosynthesis

    Biosynthesis, i.e., chemical synthesis occurring in biological contexts, is a term most often referring to multi-step, enzyme-catalyzed processes where chemical substances absorbed as nutrients (or previously converted through biosynthesis) serve as enzyme substrates, with conversion by the living organism either into simpler or more complex ...

  7. Activation energy - Wikipedia

    en.wikipedia.org/wiki/Activation_energy

    A catalyst is able to reduce the activation energy by forming a transition state in a more favorable manner. Catalysts, by nature, create a more "comfortable" fit for the substrate of a reaction to progress to a transition state. This is possible due to a release of energy that occurs when the substrate binds to the active site of a catalyst ...

  8. Diffusion-limited enzyme - Wikipedia

    en.wikipedia.org/wiki/Diffusion-limited_enzyme

    Most enzymes have a rate around 10 5 s −1 M −1. The fastest enzymes in the dark box on the right (>10 8 s −1 M −1) are constrained by the diffusion limit. (Data adapted from reference [1]) A diffusion-limited enzyme catalyses a reaction so efficiently that the rate limiting step is that of substrate diffusion into the active site, or ...

  9. Metabolic pathway - Wikipedia

    en.wikipedia.org/wiki/Metabolic_pathway

    The reactants, products, and intermediates of an enzymatic reaction are known as metabolites, which are modified by a sequence of chemical reactions catalyzed by enzymes. [1]: 26 In most cases of a metabolic pathway, the product of one enzyme acts as the substrate for the next. However, side products are considered waste and removed from the cell.