Search results
Results From The WOW.Com Content Network
Thus the Fibonacci sequence is an example of a ... Example 1. p = 7, in this case p ... This method amounts to a radix 2 number register in golden ratio base ...
A famous example is the recurrence for the Fibonacci numbers, = + where the order is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients , because the coefficients of the linear function (1 and 1) are constants that do not depend on n . {\displaystyle n.}
A repfigit, or Keith number, is an integer such that, when its digits start a Fibonacci sequence with that number of digits, the original number is eventually reached. An example is 47, because the Fibonacci sequence starting with 4 and 7 (4, 7, 11, 18, 29, 47) reaches 47. A repfigit can be a tribonacci sequence if there are 3 digits in the ...
A recursive step — a set of rules that reduces all successive cases toward the base case. For example, the following is a recursive definition of a person's ancestor. One's ancestor is either: One's parent (base case), or; One's parent's ancestor (recursive step). The Fibonacci sequence is another classic example of recursion: Fib(0) = 0 as ...
For example, consider the recursive formulation for generating the Fibonacci sequence: F i = F i−1 + F i−2, with base case F 1 = F 2 = 1. Then F 43 = F 42 + F 41, and F 42 = F 41 + F 40. Now F 41 is being solved in the recursive sub-trees of both F 43 as well as F 42. Even though the total number of sub-problems is actually small (only 43 ...
In computer science, corecursion is a type of operation that is dual to recursion.Whereas recursion works analytically, starting on data further from a base case and breaking it down into smaller data and repeating until one reaches a base case, corecursion works synthetically, starting from a base case and building it up, iteratively producing data further removed from a base case.
That is, if the modulo base is a Fibonacci number (≥ 3) with an even index, the period is twice the index and the cycle has two zeros. If the base is a Fibonacci number (≥ 5) with an odd index, the period is four times the index and the cycle has four zeros.
The sum of numbers in a General Fibonacci integer sequence that correspond with the nonzero digits in the base-φ number, is the multiplication of the base-φ number and the element at the zero-position in the sequence. For example: product 10 (10100.0101 base-φ) and 25 (zero position) = 5 + 10 + 65 + 170 = 250