Search results
Results From The WOW.Com Content Network
At −47.3 °C it has monoclinic crystal structure with space group C2/c and lattice constants a = 20.3, b = 11.6, c = 19.9 (.10 −1 nm), β = 111°. [8] With a specific gravity greater than 1, carbon tetrachloride will be present as a dense nonaqueous phase liquid if sufficient quantities are spilt in the environment.
One common form of polar interaction is the hydrogen bond, which is also known as the H-bond. For example, water forms H-bonds and has a molar mass M = 18 and a boiling point of +100 °C, compared to nonpolar methane with M = 16 and a boiling point of –161 °C.
1,2,4-Trichlorobenzene is an organochlorine compound, one of three isomers of trichlorobenzene. It is a derivative of benzene with three chloride substituents. It is a colorless liquid used as a solvent for a variety of compounds and materials.
Water is the medium of the oceans, the medium which carries all the substances and elements involved in the marine biogeochemical cycles. Water as found in nature almost always includes dissolved substances, so water has been described as the "universal solvent" for its ability to dissolve so many substances.
Organochlorine chemistry is concerned with the properties of organochlorine compounds, or organochlorides, organic compounds that contain one or more carbon–chlorine bonds. [1] The chloroalkane class ( alkanes with one or more hydrogens substituted by chlorine) includes common examples.
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
[1] [3] [4] [5] The chlorine cycle (Cl) is the biogeochemical cycling of chlorine through the atmosphere, hydrosphere, biosphere, and lithosphere. Chlorine is most commonly found as inorganic chloride ions, or a number of chlorinated organic forms. [1] [2] Over 5,000 biologically produced chlorinated organics have been identified. [3]
[1] The general chemical formula of the halogen addition reaction is: C=C + X 2 → X−C−C−X (X represents the halogens bromine or chlorine, and in this case, a solvent could be CH 2 Cl 2 or CCl 4). The product is a vicinal dihalide. This type of reaction is a halogenation and an electrophilic addition.