Search results
Results From The WOW.Com Content Network
For example, the Euclidean topology on the plane admits as a base the set of all open rectangles with horizontal and vertical sides, and a nonempty intersection of two such basic open sets is also a basic open set. But another base for the same topology is the collection of all open disks; and here the full (B2) condition is necessary.
This is a list of useful examples in general topology, a field of mathematics. Alexandrov topology; Cantor space; Co-kappa topology Cocountable topology; Cofinite topology; Compact-open topology; Compactification; Discrete topology; Double-pointed cofinite topology; Extended real number line; Finite topological space; Hawaiian earring; Hilbert cube
Base (topology) – Collection of open sets used to define a topology; Filter (set theory) – Family of sets representing "large" sets; Filters in topology – Use of filters to describe and characterize all basic topological notions and results. Locally convex topological vector space – A vector space with a topology defined by convex open sets
Absolutely closed See H-closed Accessible See . Accumulation point See limit point. Alexandrov topology The topology of a space X is an Alexandrov topology (or is finitely generated) if arbitrary intersections of open sets in X are open, or equivalently, if arbitrary unions of closed sets are closed, or, again equivalently, if the open sets are the upper sets of a poset.
The following is a list of named topologies or topological spaces, many of which are counterexamples in topology and related branches of mathematics. This is not a list of properties that a topology or topological space might possess; for that, see List of general topology topics and Topological property.
A base (or basis) B for a topological space X with topology T is a collection of open sets in T such that every open set in T can be written as a union of elements of B. [3] [4] We say that the base generates the topology T. Bases are useful because many properties of topologies can be reduced to statements about a base that generates that ...
Continuum (topology) Extended real number line; Long line (topology) Sierpinski space; Cantor set, Cantor space, Cantor cube; Space-filling curve; Topologist's sine curve; Uniform norm; Weak topology; Strong topology; Hilbert cube; Lower limit topology; Sorgenfrey plane; Real tree; Compact-open topology; Zariski topology; Kuratowski closure ...
An example of a regular space that is not completely regular is the Tychonoff corkscrew. Most interesting spaces in mathematics that are regular also satisfy some stronger condition. Thus, regular spaces are usually studied to find properties and theorems, such as the ones below, that are actually applied to completely regular spaces, typically ...