Search results
Results From The WOW.Com Content Network
The Gmelin rare earths handbook lists 1522 °C and 1550 °C as two melting points given in the literature, the most recent reference [Handbook on the chemistry and physics of rare earths, vol.12 (1989)] is given with 1529 °C.
Most definitions of the term 'refractory metals' list the extraordinarily high melting point as a key requirement for inclusion. By one definition, a melting point above 4,000 °F (2,200 °C) is necessary to qualify, which includes iridium, osmium, niobium, molybdenum, tantalum, tungsten, rhenium, rhodium, ruthenium and hafnium. [2]
The melting point (or, rarely, liquefaction point) of a substance is the temperature at which it changes state from solid to liquid. At the melting point the solid and liquid phase exist in equilibrium. The melting point of a substance depends on pressure and is usually specified at a standard pressure such as 1 atmosphere or 100 kPa.
{{Periodic table (melting point)|state=expanded}} or {{Periodic table (melting point)|state=collapsed}}This template's initial visibility currently defaults to autocollapse, meaning that if there is another collapsible item on the page (a navbox, sidebar, or table with the collapsible attribute), it is hidden apart from its title bar; if not, it is fully visible.
Fusible alloys are typically made from low melting metals. There are 14 low melting metallic elements that are stable for practical handling. These are in 2 distinct groups: The 5 alkali metals have 1 s electron and melt between +181 (Li) and +28 (Cs) Celsius; The 9 poor metals have 10 d electrons and from none (Zn, Cd, Hg) to three (Bi) p electrons, they melt between -38 (Hg) and +419 (Zn ...
[71] [104] Therefore, the falling melting and boiling points of the alkali metals indicate that the strength of the metallic bonds of the alkali metals decreases down the group. [71] This is because metal atoms are held together by the electromagnetic attraction from the positive ions to the delocalised electrons.
Crystal structures of elements at their melting points at atmospheric pressure 1 H 13 K Mg: 2 He * 3 Li 453 K W: 4 Be 1560 K W: 5 B 2349 K β-B: 6 C 3800 K g-C: 7 N 63 K β-N: 8 O 54 K γ-O: 9 F 53 K γ-O: 10 Ne 24 K Cu: 11 Na 370 K W: 12 Mg 923 K Mg: 13 Al 933 K Cu: 14 Si 1687 K d-C: 15 P 883 K b-P: 16 S 393 K β-S: 17 Cl 171 K Cl: 18 Ar 83 K ...
Boca Raton, Florida, 2003; Section 6, Fluid Properties; Critical Constants. Also agrees with Celsius values from Section 4: Properties of the Elements and Inorganic Compounds, Melting, Boiling, Triple, and Critical Point Temperatures of the Elements Estimated accuracy for Tc and Pc is indicated by the number of digits.