Search results
Results From The WOW.Com Content Network
Sulfide deposits frequently are a mix of different metal sulfides, such as copper, zinc, silver, arsenic, mercury, iron and other metals. (Sphalerite (ZnS with more or less iron), for example, is not uncommon in copper sulfide deposits, and the metal smelted would be brass, which is both harder and more durable than copper.) The metals could ...
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Islamic Golden Age brass astrolabe Brass lectern with an eagle. Attributed to Aert van Tricht, Limburg (Netherlands), c. 1500.. Brass is an alloy of copper and zinc, in proportions which can be varied to achieve different colours and mechanical, electrical, acoustic and chemical properties, [1] but copper typically has the larger proportion, generally 66% copper and 34% zinc.
Copper alloys are metal alloys that have copper as their principal component. They have high resistance against corrosion . Of the large number of different types, the best known traditional types are bronze , where tin is a significant addition, and brass , using zinc instead.
Bronze tools, weapons, armor, and building materials such as decorative tiles were harder and more durable than their stone and copper ("Chalcolithic") predecessors. Initially, bronze was made out of copper and arsenic or from naturally or artificially mixed ores of those metals, forming arsenic bronze. [6]
The chemical elements can be broadly divided into metals, metalloids, and nonmetals according to their shared physical and chemical properties.All elemental metals have a shiny appearance (at least when freshly polished); are good conductors of heat and electricity; form alloys with other metallic elements; and have at least one basic oxide.
Bismuth bronze or bismuth brass is a copper alloy which typically contains 1-3% bismuth by weight, although some alloys contain over 6% Bi. This bronze alloy is very corrosion -resistant, a property which makes it suitable for use in environments such as the ocean.
The hardness of synthetic diamond (70–150 GPa) is very dependent on the relative purity of the crystal itself. The more perfect the crystal structure, the harder the diamond becomes. It has been reported that HPHT single crystals and nanocrystalline diamond aggregates (aggregated diamond nanorods) can be harder than natural diamond. [25]