Search results
Results From The WOW.Com Content Network
A lens may be considered a thin lens if its thickness is much less than the radii of curvature of its surfaces (d ≪ | R 1 | and d ≪ | R 2 |).. In optics, a thin lens is a lens with a thickness (distance along the optical axis between the two surfaces of the lens) that is negligible compared to the radii of curvature of the lens surfaces.
It was first proposed in 1817 by the mathematician Carl Friedrich Gauss for a refracting telescope design, but was seldom implemented and is better known as the basis for the Double-Gauss lens first proposed in 1888 by Alvan Graham Clark, which is a four-element, four-group compound lens that uses a symmetric pair of Gauss lenses.
The equations below assume a beam with a circular cross-section at all values of z; this can be seen by noting that a single transverse dimension, r, appears.Beams with elliptical cross-sections, or with waists at different positions in z for the two transverse dimensions (astigmatic beams) can also be described as Gaussian beams, but with distinct values of w 0 and of the z = 0 location for ...
For the purposes of ray tracing, this is equivalent to a series of identical thin lenses of focal length f = R/2, each separated from the next by length d. This construction is known as a lens equivalent duct or lens equivalent waveguide.
Gaussian optics is a technique in geometrical optics that describes the behaviour of light rays in optical systems by using the paraxial approximation, in which only rays which make small angles with the optical axis of the system are considered. [1] In this approximation, trigonometric functions can be expressed as linear functions of the angles.
In optics, the complex beam parameter is a complex number that specifies the properties of a Gaussian beam at a particular point z along the axis of the beam. It is usually denoted by q . It can be calculated from the beam's vacuum wavelength λ 0 , the radius of curvature R of the phase front , the index of refraction n ( n =1 for air), and ...
The concept can be inferred from a theorem in projective geometry of Gérard Desargues; the principle also readily derives from simple geometric considerations and application of the Gaussian thin-lens formula, as shown in the section Proof of the Scheimpflug principle.
In weak lensing by large-scale structure, the thin-lens approximation may break down, and low-density extended structures may not be well approximated by multiple thin-lens planes. In this case, the deflection can be derived by instead assuming that the gravitational potential is slowly varying everywhere (for this reason, this approximation is ...