Search results
Results From The WOW.Com Content Network
In mathematics, the modulus of convexity and the characteristic of convexity are measures of "how convex" the unit ball in a Banach space is. In some sense, the modulus of convexity has the same relationship to the ε-δ definition of uniform convexity as the modulus of continuity does to the ε-δ definition of continuity.
It is also strongly convex (and hence strictly convex too), with strong convexity constant 2. The function () = has ″ =, so f is a convex function. It is strictly convex, even though the second derivative is not strictly positive at all points. It is not strongly convex.
A smooth simple closed curve, with a regular parameterization, is convex if and only if its curvature has a consistent sign: always non-negative, or always non-positive. [ 13 ] [ e ] Every smooth simple closed curve with strictly positive (or strictly negative) curvature is strictly convex, but some strictly convex curves can have points with ...
The classes of s-convex measures form a nested increasing family as s decreases to −∞" . or, equivalently {} {}.Thus, the collection of −∞-convex measures is the largest such class, whereas the 0-convex measures (the logarithmically concave measures) are the smallest class.
then is called strictly convex. [1]Convex functions are related to convex sets. Specifically, the function is convex if and only if its epigraph. A function (in black) is convex if and only if its epigraph, which is the region above its graph (in green), is a convex set.
Convexity (finance) - refers to non-linearities in a financial model. When the price of an underlying variable changes, the price of an output does not change linearly, but depends on the higher-order derivatives of the modeling function. Geometrically, the model is no longer flat but curved, and the degree of curvature is called the convexity.
A convex optimization problem is defined by two ingredients: [5] [6] The objective function, which is a real-valued convex function of n variables, :;; The feasible set, which is a convex subset.
When the scalars are real numbers, or belong to an ordered field, one generally calls a cone a subset of a vector space that is closed under multiplication by a positive scalar. In this context, a convex cone is a cone that is closed under addition, or, equivalently, a subset of a vector space that is closed under linear combinations with ...