Search results
Results From The WOW.Com Content Network
In graph theory, a tree is an undirected graph in which any two vertices are connected by exactly one path, or equivalently a connected acyclic undirected graph. [1] A forest is an undirected graph in which any two vertices are connected by at most one path, or equivalently an acyclic undirected graph, or equivalently a disjoint union of trees.
For a given node, its number of children. A leaf, by definition, has degree zero. Degree of tree The degree of a tree is the maximum degree of a node in the tree. Distance The number of edges along the shortest path between two nodes. Level The level of a node is the number of edges along the unique path between it and the root node. [4]
A graph with three vertices and three edges. A graph (sometimes called an undirected graph to distinguish it from a directed graph, or a simple graph to distinguish it from a multigraph) [4] [5] is a pair G = (V, E), where V is a set whose elements are called vertices (singular: vertex), and E is a set of unordered pairs {,} of vertices, whose elements are called edges (sometimes links or lines).
A special kind of spanning tree, the Xuong tree, is used in topological graph theory to find graph embeddings with maximum genus. A Xuong tree is a spanning tree such that, in the remaining graph, the number of connected components with an odd number of edges is as small as possible.
In graph theory, the treewidth of an undirected graph is an integer number which specifies, informally, how far the graph is from being a tree. The smallest treewidth is 1; the graphs with treewidth 1 are exactly the trees and the forests. An example of graphs with treewidth at most 2 are the series–parallel graphs.
2. A k-tree is a graph formed by gluing (k + 1)-cliques together on shared k-cliques. A tree in the ordinary sense is a 1-tree according to this definition. tree decomposition A tree decomposition of a graph G is a tree whose nodes are labeled with sets of vertices of G; these sets are called bags.
It is possible to define a graph with vertices and edges the disjoint union of all coset spaces Γ/G x and Γ/G y respectively. This graph is a tree, called the universal covering tree, on which Γ acts. It admits the graph Y as fundamental domain. The graph of groups given by the stabilizer subgroups on the fundamental domain corresponds to ...
Each tree node lists at most three vertices, so the width of this decomposition is two. In graph theory, a tree decomposition is a mapping of a graph into a tree that can be used to define the treewidth of the graph and speed up solving certain computational problems on the graph. Tree decompositions are also called junction trees, clique trees ...