Ad
related to: liquid propellant rocket engine design and test simulation
Search results
Results From The WOW.Com Content Network
The propellant used in a rocket engine plays an important role in both engine design and in design of the launch vehicle and related ground equipment to service the vehicle. Weight, energy density , cost, toxicity, risk of explosions, and other problems make it important for engineers to design rockets with appropriate propellants.
Archimedes is presented as a highly reusable liquid-propellant engine using methane and liquid oxygen in an oxidizer-rich staged combustion cycle. [1] [2] There are both sea-level and vacuum variants. The engine is mostly 3D printed, [7] with some of the biggest 3D printers in the world. The rationale for the cycle change from the original gas ...
A liquid-propellant rocket or liquid rocket uses a rocket engine burning liquid propellants. (Alternate approaches use gaseous or solid propellants.) Liquids are desirable propellants because they have reasonably high density and their combustion products have high specific impulse (I sp). This allows the volume of the propellant tanks to be ...
The F-1 engine is the most powerful single-nozzle liquid-fueled rocket engine ever flown. The M-1 rocket engine was designed to have more thrust, but it was only tested at the component level. The later developed RD-170 is much more stable, technologically more advanced , more efficient and produces more thrust, but uses four nozzles fed by a ...
Rutherford is a liquid-propellant rocket engine designed by aerospace company Rocket Lab [8] and manufactured in Long Beach, California. [9] The engine is used on the company's own rocket, Electron. It uses LOX (liquid oxygen) and RP-1 (refined kerosene) as its propellants and is the first flight-ready engine to use the electric-pump-fed cycle.
Both engines were used to power aircraft, the Me 163 Komet interceptor in the case of the Walter 509-series German engine designs, and RATO units from both nations (as with the Starthilfe system for the Luftwaffe) to assist take-off of aircraft, which comprised the primary purpose for the case of the U.S. liquid-fueled rocket engine technology ...
The Vikas (a portmanteau from initials of VIKram Ambalal Sarabhai [5] [6]) is a family of hypergolic liquid fuelled rocket engines conceptualized and designed by the Liquid Propulsion Systems Centre in the 1970s. [7] [8] The design was based on the licensed version of the Viking engine with the chemical pressurisation system. [9]
The Curie engine, named after Polish scientist Marie SkÅ‚odowska–Curie, is a small liquid-propellant rocket engine designed to release "small satellites from the constricting parameters of primary payload orbits and enables them to fully reach their potential, including faster deployment of small satellite constellations and better positioning for Earth imaging". [3]