When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Carnot's theorem (inradius, circumradius) - Wikipedia

    en.wikipedia.org/wiki/Carnot's_theorem_(inradius...

    where r is the inradius and R is the circumradius of the triangle. Here the sign of the distances is taken to be negative if and only if the open line segment DX (X = F, G, H) lies completely outside the triangle. In the diagram, DF is negative and both DG and DH are positive. The theorem is named after Lazare Carnot (1753–1823).

  3. Incircle and excircles - Wikipedia

    en.wikipedia.org/wiki/Incircle_and_excircles

    1.2.3 Relation to area of the triangle. ... where and are the circumradius and inradius respectively, and is the distance between the ...

  4. Bicentric quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Bicentric_quadrilateral

    The circumradius R and the inradius r satisfy the inequality which was proved by L. Fejes Tóth in 1948. [19] It holds with equality only when the two circles are concentric (have the same center as each other); then the quadrilateral is a square. The inequality can be proved in several different ways, one using the double inequality for the ...

  5. Euler's theorem in geometry - Wikipedia

    en.wikipedia.org/wiki/Euler's_theorem_in_geometry

    In geometry, Euler's theorem states that the distance d between the circumcenter and incenter of a triangle is given by [1] [2] = or equivalently + + =, where and denote the circumradius and inradius respectively (the radii of the circumscribed circle and inscribed circle respectively).

  6. Circumcircle - Wikipedia

    en.wikipedia.org/wiki/Circumcircle

    By Euler's theorem in geometry, the distance between the circumcenter O and the incenter I is ¯ = (), where r is the incircle radius and R is the circumcircle radius; hence the circumradius is at least twice the inradius (Euler's triangle inequality), with equality only in the equilateral case.

  7. Carnot's theorem - Wikipedia

    en.wikipedia.org/wiki/Carnot's_theorem

    Carnot's theorem (inradius, circumradius), describing a property of the incircle and the circumcircle of a triangle; Carnot's theorem (conics), describing a relation between triangles and conic sections; Carnot's theorem (perpendiculars), describing a property of certain perpendiculars on triangle sides; In physics:

  8. Semiperimeter - Wikipedia

    en.wikipedia.org/wiki/Semiperimeter

    The inradius is = () (). The law of cotangents gives the cotangents of the half-angles at the vertices of a triangle in terms of the semiperimeter, the sides, and the inradius. The length of the internal bisector of the angle opposite the side of length a is [1]

  9. Mixtilinear incircles of a triangle - Wikipedia

    en.wikipedia.org/wiki/Mixtilinear_incircles_of_a...

    The radical center of the three mixtilinear incircles is the point which divides in the ratio: : =: where ,,, are the incenter, inradius, circumcenter and circumradius respectively. [ 5 ] References