When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Estimation of covariance matrices - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_covariance...

    The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive-definite matrices, the SCM is a biased and inefficient estimator. [1]

  3. Newey–West estimator - Wikipedia

    en.wikipedia.org/wiki/Newey–West_estimator

    In Python, the statsmodels [15] module includes functions for the covariance matrix using Newey–West. In Gretl, the option --robust to several estimation commands (such as ols) in the context of a time-series dataset produces Newey–West standard errors. [16]

  4. Covariance matrix - Wikipedia

    en.wikipedia.org/wiki/Covariance_matrix

    Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...

  5. Pearson correlation coefficient - Wikipedia

    en.wikipedia.org/wiki/Pearson_correlation...

    Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.

  6. Covariance - Wikipedia

    en.wikipedia.org/wiki/Covariance

    The eddy covariance technique is a key atmospherics measurement technique where the covariance between instantaneous deviation in vertical wind speed from the mean value and instantaneous deviation in gas concentration is the basis for calculating the vertical turbulent fluxes.

  7. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    The covariance-free approach avoids the np 2 operations of explicitly calculating and storing the covariance matrix X T X, instead utilizing one of matrix-free methods, for example, based on the function evaluating the product X T (X r) at the cost of 2np operations.

  8. Kosambi–Karhunen–Loève theorem - Wikipedia

    en.wikipedia.org/wiki/Kosambi–Karhunen–Loève...

    Recall that the main implication and difficulty of the KL transformation is computing the eigenvectors of the linear operator associated to the covariance function, which are given by the solutions to the integral equation written above. Define Σ, the covariance matrix of X, as an N × N matrix whose elements are given by:

  9. Complex Wishart distribution - Wikipedia

    en.wikipedia.org/wiki/Complex_Wishart_distribution

    It is the distribution of times the sample Hermitian covariance matrix of zero-mean independent Gaussian random variables. It has support for Hermitian positive definite matrices. [1] The complex Wishart distribution is the density of a complex-valued sample covariance matrix. Let