Search results
Results From The WOW.Com Content Network
The radiative transfer equation is a monochromatic equation to calculate radiance in a single layer of the Earth's atmosphere. To calculate the radiance for a spectral region with a finite width (e.g., to estimate the Earth's energy budget or simulate an instrument response), one has to integrate this over a band of frequencies (or wavelengths ...
Radiative transfer (also called radiation transport) is the physical phenomenon of energy transfer in the form of electromagnetic radiation. The propagation of radiation through a medium is affected by absorption, emission, and scattering processes. The equation of radiative transfer describes these interactions mathematically. Equations of ...
The vibrational and rotational excited states of greenhouse gases that emit thermal infrared radiation are in LTE up to about 60 km. [7] Radiative transfer calculations show negligible change (0.2%) due to absorption and emission above about 50 km. Schwarzschild's equation therefore is appropriate for most problems involving thermal infrared in ...
General purpose, includes 2D and 3D magnetics solvers, both static and harmonic. 3D solver is based on the Whitney AV formulation of Maxwell's equations. VSimEM: Commercial Yes Yes Yes Yes Yes Automatic, variable mesh FDTD, PIC, finite volume: Simulating electromagnetics, and electrostatics in complex dielectric and metallic environments.
The RTE is a differential equation describing radiance (, ^,).It can be derived via conservation of energy.Briefly, the RTE states that a beam of light loses energy through divergence and extinction (including both absorption and scattering away from the beam) and gains energy from light sources in the medium and scattering directed towards the beam.
Streamer is a radiative transfer code (Key and Schweiger, 1988) to calculate radiances (intensities) or irradiances in the atmosphere.. The code uses N-stream approximation to the radiative transfer equations (Stamnes et al. 1988) and allows for flexible choice of bands.
Putting this into the equation for radiative transfer we get = where s is the distance measured along the path traveled by the beam. The minus sign on the left hand side shows that the intensity decreases as the beam travels, due to the absorption of photons.
GIZMO [24] is a flexible, massively parallel, multi-physics simulation code, written in ANSI C by Philip F. Hopkins. The code offers diverse methods to solve fluid equations. It also introduces novel methods, which optimize the resolution of simulations and minimize common errors found in previous methods that limited the accuracy of prior solvers.