Search results
Results From The WOW.Com Content Network
The program is solvable in polynomial time if the graph has all undirected or all directed edges. Variants include the rural postman problem. [3]: ND25, ND27 Clique cover problem [2] [3]: GT17 Clique problem [2] [3]: GT19 Complete coloring, a.k.a. achromatic number [3]: GT5 Cycle rank; Degree-constrained spanning tree [3]: ND1
The two definitions of NP as the class of problems solvable by a nondeterministic Turing machine (TM) in polynomial time and the class of problems verifiable by a deterministic Turing machine in polynomial time are equivalent. The proof is described by many textbooks, for example, Sipser's Introduction to the Theory of Computation, section 7.3.
"A large-scale quantum computer would be able to efficiently solve NP-complete problems." The class of decision problems that can be efficiently solved (in principle) by a fault-tolerant quantum computer is known as BQP. However, BQP is not believed to contain all of NP, and if it does not, then it cannot contain any NP-complete problem. [15]
A variant of the 3-satisfiability problem is the one-in-three 3-SAT (also known variously as 1-in-3-SAT and exactly-1 3-SAT). Given a conjunctive normal form with three literals per clause, the problem is to determine whether there exists a truth assignment to the variables so that each clause has exactly one TRUE literal (and thus exactly two ...
The complexity class NP, on the other hand, contains many problems that people would like to solve efficiently, but for which no efficient algorithm is known, such as the Boolean satisfiability problem, the Hamiltonian path problem and the vertex cover problem. Since deterministic Turing machines are special non-deterministic Turing machines ...
Just as the class P is defined in terms of polynomial running time, the class EXPTIME is the set of all decision problems that have exponential running time. In other words, any problem in EXPTIME is solvable by a deterministic Turing machine in O (2 p ( n ) ) time, where p ( n ) is a polynomial function of n .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A decision problem is a computational problem where the answer for every instance is either yes or no. An example of a decision problem is primality testing: "Given a positive integer n, determine if n is prime." A decision problem is typically represented as the set of all instances for which the answer is yes. For example, primality testing ...