Search results
Results From The WOW.Com Content Network
Phloem (/ ˈ f l oʊ. əm /, FLOH-əm) is the living tissue in vascular plants that transports the soluble organic compounds made during photosynthesis and known as photosynthates, in particular the sugar sucrose, [1] to the rest of the plant.
In the stems of some Asterales dicots, there may be phloem located inwardly from the xylem as well. Between the xylem and phloem is a meristem called the vascular cambium. This tissue divides off cells that will become additional xylem and phloem. This growth increases the girth of the plant, rather than its length.
Botanists define vascular plants by three primary characteristics: Vascular plants have vascular tissues which distribute resources through the plant. Two kinds of vascular tissue occur in plants: xylem and phloem. Phloem and xylem are closely associated with one another and are typically located immediately adjacent to each other in the plant.
A vascular bundle is a part of the transport system in vascular plants. The transport itself happens in the stem , which exists in two forms: xylem and phloem . Both these tissues are present in a vascular bundle, which in addition will include supporting and protective tissues.
In plant anatomy, there are two main types of sieve elements. Companion cells and sieve cells originate from meristems, which are tissues that actively divide throughout a plant's lifetime. They are similar to the development of xylem, a water conducting tissue in plants whose main function is also transportation in the plant vascular system. [1]
It is a derivative of the most rich fatty acid in the lipids of leaf membranes, alpha-linolenic acid. When plants experience mechanical wounding or herbivory, JA is synthesized de novo and induces genome-wide changes in gene expression. [5] JA travels through plants via the phloem, and accumulates in vascular tissue. [6]
In woody plants, it forms a cylinder of unspecialized meristem cells, as a continuous ring from which the new tissues are grown. Unlike the xylem and phloem, it does not transport water, minerals or food through the plant. Other names for the vascular cambium are the main cambium, wood cambium, or bifacial cambium.
The pressure flow hypothesis, also known as the mass flow hypothesis, is the best-supported theory to explain the movement of sap through the phloem of plants. [1] [2] It was proposed in 1930 by Ernst Münch, a German plant physiologist. [3]