Search results
Results From The WOW.Com Content Network
A neuromuscular junction (or myoneural junction) is a chemical synapse between a motor neuron and a muscle fiber. [1] It allows the motor neuron to transmit a signal to the muscle fiber, causing muscle contraction. [2] Muscles require innervation to function—and even just to maintain muscle tone, avoiding atrophy.
The parasympathetic nervous system, which uses acetylcholine almost exclusively to send its messages, is said to be almost entirely cholinergic. Neuromuscular junctions, preganglionic neurons of the sympathetic nervous system, the basal forebrain, and brain stem complexes are also cholinergic, as are the receptor for the merocrine sweat glands.
A neuroeffector junction is a site where a motor neuron releases a neurotransmitter to affect a target—non-neuronal—cell. This junction functions like a synapse.However, unlike most neurons, somatic efferent motor neurons innervate skeletal muscle, and are always excitatory.
The interface between a motor neuron and muscle fiber is a specialized synapse called the neuromuscular junction. Upon adequate stimulation, the motor neuron releases a flood of acetylcholine (Ach) neurotransmitters from synaptic vesicles bound to the plasma membrane of the axon terminals.
Squid giant synapse; Neuromuscular junction (NMJ), a cholinergic synapse in vertebrates, glutamatergic in insects; Ciliary calyx in the ciliary ganglion of chicks [44] Calyx of Held in the brainstem; Ribbon synapse in the retina; Schaffer collateral synapses in the hippocampus. These synapses are small, but their pre- and postsynaptic neurons ...
Acetylcholine is the neurotransmitter used at the neuromuscular junction—in other words, it is the chemical that motor neurons of the nervous system release in order to activate muscles. This property means that drugs that affect cholinergic systems can have very dangerous effects ranging from paralysis to convulsions.
The neuromuscular junction is the synapse that is formed between an alpha motor neuron (α-MN) and the skeletal muscle fiber. In order for a muscle to contract, an action potential is first propagated down a nerve until it reaches the axon terminal of the motor neuron.
Much of our understanding of synapse formation comes from studies at the neuromuscular junction. The transmitter at this synapse is acetylcholine. The acetylcholine receptor (AchR) is present at the surface of muscle cells before synapse formation. The arrival of the nerve induces clustering of the receptors at the synapse.