When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. CUDA - Wikipedia

    en.wikipedia.org/wiki/CUDA

    CUDA works with all Nvidia GPUs from the G8x series onwards, including GeForce, Quadro and the Tesla line. CUDA is compatible with most standard operating systems. CUDA 8.0 comes with the following libraries (for compilation & runtime, in alphabetical order): cuBLAS – CUDA Basic Linear Algebra Subroutines library; CUDART – CUDA Runtime library

  3. ROCm - Wikipedia

    en.wikipedia.org/wiki/ROCm

    Nvidia's CUDA is closed-source, whereas AMD ROCm is open source. There is open-source software built on top of the closed-source CUDA, for instance RAPIDS. CUDA is able run on consumer GPUs, whereas ROCm support is mostly offered for professional hardware such as AMD Instinct and AMD Radeon Pro.

  4. Comparison of deep learning software - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_deep...

    C++, Wolfram Language, CUDA: Wolfram Language: Yes No Yes No Yes Yes [75] Yes Yes Yes Yes [76] Yes Software Creator Initial release Software license [a] Open source Platform Written in Interface OpenMP support OpenCL support CUDA support ROCm support [77] Automatic differentiation [2] Has pretrained models Recurrent nets Convolutional nets RBM/DBNs

  5. Nvidia CUDA Compiler - Wikipedia

    en.wikipedia.org/wiki/Nvidia_CUDA_Compiler

    CUDA code runs on both the central processing unit (CPU) and graphics processing unit (GPU). NVCC separates these two parts and sends host code (the part of code which will be run on the CPU) to a C compiler like GNU Compiler Collection (GCC) or Intel C++ Compiler (ICC) or Microsoft Visual C++ Compiler, and sends the device code (the part which will run on the GPU) to the GPU.

  6. Nvidia NVDEC - Wikipedia

    en.wikipedia.org/wiki/Nvidia_NVDEC

    Nvidia NVDEC (formerly known as NVCUVID [1]) is a feature in its graphics cards that performs video decoding, offloading this compute-intensive task from the CPU. [2] NVDEC is a successor of PureVideo and is available in Kepler and later NVIDIA GPUs. It is accompanied by NVENC for video encoding in Nvidia's Video Codec SDK. [2]

  7. General-purpose computing on graphics processing units

    en.wikipedia.org/wiki/General-purpose_computing...

    Nvidia launched CUDA in 2006, a software development kit (SDK) and application programming interface (API) that allows using the programming language C to code algorithms for execution on GeForce 8 series and later GPUs. ROCm, launched in 2016, is AMD's open-source response to CUDA. It is, as of 2022, on par with CUDA with regards to features ...

  8. CuPy - Wikipedia

    en.wikipedia.org/wiki/CuPy

    CuPy is an open source library for GPU-accelerated computing with Python programming language, providing support for multi-dimensional arrays, sparse matrices, and a variety of numerical algorithms implemented on top of them. [3]

  9. rCUDA - Wikipedia

    en.wikipedia.org/wiki/RCUDA

    rCUDA, which stands for Remote CUDA, is a type of middleware software framework for remote GPU virtualization. Fully compatible with the CUDA application programming interface ( API ), it allows the allocation of one or more CUDA-enabled GPUs to a single application.