When.com Web Search

  1. Ad

    related to: proofs involving quadrilaterals ppt

Search results

  1. Results From The WOW.Com Content Network
  2. Brahmagupta theorem - Wikipedia

    en.wikipedia.org/wiki/Brahmagupta_theorem

    In geometry, Brahmagupta's theorem states that if a cyclic quadrilateral is orthodiagonal (that is, has perpendicular diagonals), then the perpendicular to a side from the point of intersection of the diagonals always bisects the opposite side. [1] It is named after the Indian mathematician Brahmagupta (598-668). [2]

  3. Newton–Gauss line - Wikipedia

    en.wikipedia.org/wiki/Newton–Gauss_line

    The two complete quadrilaterals have a shared diagonal, EF. N lies on the Newton–Gauss line of both quadrilaterals. N is equidistant from G and H, since it is the circumcenter of the cyclic quadrilateral EGFH. If triangles GMP, HMQ are congruent, and it will follow that M lies on the perpendicular bisector of the line HG.

  4. Saccheri quadrilateral - Wikipedia

    en.wikipedia.org/wiki/Saccheri_Quadrilateral

    Saccheri quadrilaterals. A Saccheri quadrilateral is a quadrilateral with two equal sides perpendicular to the base.It is named after Giovanni Gerolamo Saccheri, who used it extensively in his 1733 book Euclides ab omni naevo vindicatus (Euclid freed of every flaw), an attempt to prove the parallel postulate using the method reductio ad absurdum.

  5. Ptolemy's theorem - Wikipedia

    en.wikipedia.org/wiki/Ptolemy's_theorem

    Ptolemy's theorem is a relation among these lengths in a cyclic quadrilateral. = + In Euclidean geometry, Ptolemy's theorem is a relation between the four sides and two diagonals of a cyclic quadrilateral (a quadrilateral whose vertices lie on a common circle).

  6. Menelaus's theorem - Wikipedia

    en.wikipedia.org/wiki/Menelaus's_theorem

    A proof given by John Wellesley Russell uses Pasch's axiom to consider cases where a line does or does not meet a triangle. [4] First, the sign of the left-hand side will be negative since either all three of the ratios are negative, the case where the line DEF misses the triangle (see diagram), or one is negative and the other two are positive, the case where DEF crosses two sides of the ...

  7. Varignon's theorem - Wikipedia

    en.wikipedia.org/wiki/Varignon's_theorem

    An arbitrary quadrilateral and its diagonals. Bases of similar triangles are parallel to the blue diagonal. Ditto for the red diagonal. The base pairs form a parallelogram with half the area of the quadrilateral, A q, as the sum of the areas of the four large triangles, A l is 2 A q (each of the two pairs reconstructs the quadrilateral) while that of the small triangles, A s is a quarter of A ...

  8. Heron's formula - Wikipedia

    en.wikipedia.org/wiki/Heron's_formula

    Cyclic Quadrilateral. Heron's formula is a special case of Brahmagupta's formula for the area of a cyclic quadrilateral. Heron's formula and Brahmagupta's formula are both special cases of Bretschneider's formula for the area of a quadrilateral. Heron's formula can be obtained from Brahmagupta's formula or Bretschneider's formula by setting one ...

  9. Category:Theorems about quadrilaterals - Wikipedia

    en.wikipedia.org/wiki/Category:Theorems_about...

    Theorems about quadrilaterals and circles (6 P) Pages in category "Theorems about quadrilaterals" The following 11 pages are in this category, out of 11 total.