When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Covariance matrix - Wikipedia

    en.wikipedia.org/wiki/Covariance_matrix

    Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...

  3. Newey–West estimator - Wikipedia

    en.wikipedia.org/wiki/Newey–West_estimator

    In Python, the statsmodels [15] module includes functions for the covariance matrix using Newey–West. In Gretl, the option --robust to several estimation commands (such as ols) in the context of a time-series dataset produces Newey–West standard errors. [16]

  4. Estimation of covariance matrices - Wikipedia

    en.wikipedia.org/wiki/Estimation_of_covariance...

    Simple cases, where observations are complete, can be dealt with by using the sample covariance matrix. The sample covariance matrix (SCM) is an unbiased and efficient estimator of the covariance matrix if the space of covariance matrices is viewed as an extrinsic convex cone in R p×p; however, measured using the intrinsic geometry of positive ...

  5. Covariance - Wikipedia

    en.wikipedia.org/wiki/Covariance

    The sample mean and the sample covariance matrix are unbiased estimates of the mean and the covariance matrix of the random vector, a vector whose jth element (=, …,) is one of the random variables.

  6. Complex Wishart distribution - Wikipedia

    en.wikipedia.org/wiki/Complex_Wishart_distribution

    It is the distribution of times the sample Hermitian covariance matrix of zero-mean independent Gaussian random variables. It has support for Hermitian positive definite matrices. [1] The complex Wishart distribution is the density of a complex-valued sample covariance matrix. Let

  7. Whitening transformation - Wikipedia

    en.wikipedia.org/wiki/Whitening_transformation

    Whitening a data matrix follows the same transformation as for random variables. An empirical whitening transform is obtained by estimating the covariance (e.g. by maximum likelihood) and subsequently constructing a corresponding estimated whitening matrix (e.g. by Cholesky decomposition).

  8. Bayesian vector autoregression - Wikipedia

    en.wikipedia.org/wiki/Bayesian_vector_autoregression

    In particular, the Minnesota prior assumes that each variable follows a random walk process, possibly with drift, and therefore consists of a normal prior on a set of parameters with fixed and known covariance matrix, which will be estimated with one of three techniques: Univariate AR, Diagonal VAR, or Full VAR.

  9. Inverse-Wishart distribution - Wikipedia

    en.wikipedia.org/wiki/Inverse-Wishart_distribution

    Suppose we wish to make inference about a covariance matrix whose prior has a (,) distribution. If the observations = [, …,] are independent p-variate Gaussian variables drawn from a (,) distribution, then the conditional distribution has a (+, +) distribution, where =.