When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Direct multiple shooting method - Wikipedia

    en.wikipedia.org/wiki/Direct_multiple_shooting...

    Thus, solutions of the boundary value problem correspond to solutions of the following system of N equations: (;,) = (;,) = (;,) =. The central N−2 equations are the matching conditions, and the first and last equations are the conditions y(t a) = y a and y(t b) = y b from the boundary value problem. The multiple shooting method solves the ...

  3. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The method of Lagrange multipliers can be extended to solve problems with multiple constraints using a similar argument. Consider a paraboloid subject to two line constraints that intersect at a single point. As the only feasible solution, this point is obviously a constrained extremum.

  4. Feasible region - Wikipedia

    en.wikipedia.org/wiki/Feasible_region

    For example, if the feasible region is defined by the constraint set {x ≥ 0, y ≥ 0}, then the problem of maximizing x + y has no optimum since any candidate solution can be improved upon by increasing x or y; yet if the problem is to minimize x + y, then there is an optimum (specifically at (x, y) = (0, 0)).

  5. Shooting method - Wikipedia

    en.wikipedia.org/wiki/Shooting_method

    In numerical analysis, the shooting method is a method for solving a boundary value problem by reducing it to an initial value problem.It involves finding solutions to the initial value problem for different initial conditions until one finds the solution that also satisfies the boundary conditions of the boundary value problem.

  6. Knapsack problem - Wikipedia

    en.wikipedia.org/wiki/Knapsack_problem

    A multiple constrained problem could consider both the weight and volume of the books. (Solution: if any number of each book is available, then three yellow books and three grey books; if only the shown books are available, then all except for the green book.) The knapsack problem is the following problem in combinatorial optimization:

  7. Dual linear program - Wikipedia

    en.wikipedia.org/wiki/Dual_linear_program

    The weak duality theorem states that the objective value of the dual LP at any feasible solution is always a bound on the objective of the primal LP at any feasible solution (upper or lower bound, depending on whether it is a maximization or minimization problem). In fact, this bounding property holds for the optimal values of the dual and ...

  8. Method of matched asymptotic expansions - Wikipedia

    en.wikipedia.org/wiki/Method_of_matched...

    The problem above is a simple example because it is a single equation with only one dependent variable, and there is one boundary layer in the solution. Harder problems may contain several co-dependent variables in a system of several equations, and/or with several boundary and/or interior layers in the solution.

  9. Linear programming - Wikipedia

    en.wikipedia.org/wiki/Linear_programming

    However, some problems have distinct optimal solutions; for example, the problem of finding a feasible solution to a system of linear inequalities is a linear programming problem in which the objective function is the zero function (i.e., the constant function taking the value zero everywhere).