When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shear and moment diagram - Wikipedia

    en.wikipedia.org/wiki/Shear_and_moment_diagram

    Shear and Bending moment diagram for a simply supported beam with a concentrated load at mid-span. Shear force and bending moment diagrams are analytical tools used in conjunction with structural analysis to help perform structural design by determining the value of shear forces and bending moments at a given point of a structural element such as a beam.

  3. Shear force - Wikipedia

    en.wikipedia.org/wiki/Shear_force

    40 tonne-force × 0.6 (to change force from tensile to shear) = 24 tonne-force. When working with a riveted or tensioned bolted joint, the strength comes from friction between the materials bolted together. Bolts are correctly torqued to maintain the friction. The shear force only becomes relevant when the bolts are not torqued.

  4. Shear stress - Wikipedia

    en.wikipedia.org/wiki/Shear_stress

    The formula to calculate average shear stress τ or force per unit area is: [1] =, where F is the force applied and A is the cross-sectional area.. The area involved corresponds to the material face parallel to the applied force vector, i.e., with surface normal vector perpendicular to the force.

  5. Shearing (physics) - Wikipedia

    en.wikipedia.org/wiki/Shearing_(physics)

    The shear center (also known as the torsional axis) is an imaginary point on a section, where a shear force can be applied without inducing any torsion. In general, the shear center is not the centroid. For cross-sectional areas having one axis of symmetry, the shear center is located on the axis of symmetry.

  6. Traction (mechanics) - Wikipedia

    en.wikipedia.org/wiki/Traction_(mechanics)

    Traction can also refer to the maximum tractive force between a body and a surface, as limited by available friction; when this is the case, traction is often expressed as the ratio of the maximum tractive force to the normal force and is termed the coefficient of traction (similar to coefficient of friction).

  7. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).

  8. Strength of materials - Wikipedia

    en.wikipedia.org/wiki/Strength_of_materials

    Transverse loading also induces shear forces that cause shear deformation of the material and increase the transverse deflection of the member. Axial loading – The applied forces are collinear with the longitudinal axis of the member. The forces cause the member to either stretch or shorten. [2]

  9. Surface force - Wikipedia

    en.wikipedia.org/wiki/Surface_force

    Block on a ramp and corresponding free body diagram of the block showing the surface force from the ramp onto the bottom of the block and separated into two components, a normal force N and a frictional shear force f, along with the body force of gravity mg acting at the center of mass.