When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Multiplicative group of integers modulo n - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group_of...

    Equivalently, the elements of this group can be thought of as the congruence classes, also known as residues modulo n, that are coprime to n. Hence another name is the group of primitive residue classes modulo n. In the theory of rings, a branch of abstract algebra, it is described as the group of units of the ring of integers modulo n.

  3. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    For computational purposes it is also necessary that division and reduction modulo R are inexpensive, and the modulus is not useful for modular multiplication unless R > N. The Montgomery form of the residue class a with respect to R is aR mod N, that is, it is the representative of the residue class aR. For example, suppose that N = 17 and ...

  4. Multiplicative order - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_order

    The multiplicative order of a number a modulo n is the order of a in the multiplicative group whose elements are the residues modulo n of the numbers coprime to n, and whose group operation is multiplication modulo n. This is the group of units of the ring Z n; it has φ(n) elements, φ being Euler's totient function, and is denoted as U(n) or ...

  5. Primitive root modulo n - Wikipedia

    en.wikipedia.org/wiki/Primitive_root_modulo_n

    If n is a positive integer, the integers from 1 to n − 1 that are coprime to n (or equivalently, the congruence classes coprime to n) form a group, with multiplication modulo n as the operation; it is denoted by × n, and is called the group of units modulo n, or the group of primitive classes modulo n.

  6. Modular arithmetic - Wikipedia

    en.wikipedia.org/wiki/Modular_arithmetic

    The equivalence class modulo m of an integer a is the set of all integers of the form a + k m, where k is any integer. It is called the congruence class or residue class of a modulo m , and may be denoted as ( a mod m ) , or as a or [ a ] when the modulus m is known from the context.

  7. Modulo - Wikipedia

    en.wikipedia.org/wiki/Modulo

    In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]

  8. Multiplicative group - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_group

    The group scheme of n-th roots of unity is by definition the kernel of the n-power map on the multiplicative group GL(1), considered as a group scheme.That is, for any integer n > 1 we can consider the morphism on the multiplicative group that takes n-th powers, and take an appropriate fiber product of schemes, with the morphism e that serves as the identity.

  9. Reduced residue system - Wikipedia

    en.wikipedia.org/wiki/Reduced_residue_system

    Every number in a reduced residue system modulo n is a generator for the additive group of integers modulo n. A reduced residue system modulo n is a group under multiplication modulo n . If { r 1 , r 2 , ... , r φ( n ) } is a reduced residue system modulo n with n > 2, then ∑ r i ≡ 0 mod n {\displaystyle \sum r_{i}\equiv 0\!\!\!\!\mod n} .