Search results
Results From The WOW.Com Content Network
In mathematics, a spherical conic or sphero-conic is a curve on the sphere, the intersection of the sphere with a concentric elliptic cone. It is the spherical analog of a conic section ( ellipse , parabola , or hyperbola ) in the plane, and as in the planar case, a spherical conic can be defined as the locus of points the sum or difference of ...
The elliptic cones intersect the sphere in spherical conics. Conical coordinates , sometimes called sphero-conal or sphero-conical coordinates, are a three-dimensional orthogonal coordinate system consisting of concentric spheres (described by their radius r ) and by two families of perpendicular elliptic cones, aligned along the z - and x ...
Any plane section of an elliptic cone is a conic section. Obviously, any right circular cone contains circles. This is also true, but less obvious, in the general case (see circular section). The intersection of an elliptic cone with a concentric sphere is a spherical conic.
In geometry, a hypercone (or spherical cone) is the figure in the 4-dimensional Euclidean space represented by the equation x 2 + y 2 + z 2 − w 2 = 0. {\displaystyle x^{2}+y^{2}+z^{2}-w^{2}=0.} It is a quadric surface, and is one of the possible 3- manifolds which are 4-dimensional equivalents of the conical surface in 3 dimensions.
The equation for a conic section with apex at the origin and tangent to the y axis is + (+) = alternately = + (+) where R is the radius of curvature at x = 0. This formulation is used in geometric optics to specify oblate elliptical ( K > 0 ), spherical ( K = 0 ), prolate elliptical ( 0 > K > −1 ), parabolic ( K = −1 ), and hyperbolic ( K ...
A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola , the parabola , and the ellipse ; the circle is a special case of the ellipse, though it was sometimes considered a fourth type.
Each grid line is a spherical conic. According to Peirce, his projection has the following properties (Peirce, 1879): The sphere is presented in a square. The part where the exaggeration of scale amounts to double that at the centre is only 9% of the area of the sphere, against 13% for the Mercator projection and 50% for the stereographic ...
In geometry, a spherical sector, [1] also known as a spherical cone, [2] is a portion of a sphere or of a ball defined by a conical boundary with apex at the center of the sphere. It can be described as the union of a spherical cap and the cone formed by the center of the sphere and the base of the cap.